Current aspects of the role of insulin resistance, systemic inflammation, and oxidative stress in the pathogenesis of hyperandrogenism and abnormal folliculogenesis in patients with polycystic ovary syndrome

Belova I.S., Khashchenko E.P., Uvarova E.V.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
Polycystic ovary syndrome (PCOS) is a pathological symptom complex characterized by oligo-anovulation, hyperandrogenism and impaired ovarian structure and function. PCOS occurs in 8–13% of early reproductive-age patients. Despite numerous studies, there is no common understanding of the causes of PCOS. In the pathogenesis of the disease, special attention is paid to concurrent hormonal disorders in the presence of metabolic ones. The manifestation of the metabolic syndrome is noted in an average of 20% of patients with PCOS by the age of 20 years and in 35–50% by the age of 30 years; the vast majority (35–90%) of them are recorded to have insulin resistance (IR). At the same time, 38–88% of patients with PCOS are overweight. Studying the signaling pathways involved in the development of the symptom complex has established a relationship between the vicious circle of IR and hyperandrogenism. This literature review places a special emphasis on impaired intracellular insulin signaling in the pathogenesis of PCOS. There is an update on fast and very fast PI3K/AKT pathways, slow and very slow MAPK and mTOR pathways of intracellular insulin signaling, which affect the processes of glycolysis and glucogenesis, lipolysis and lipogenesis, systemic inflammation and oxidative stress, proliferation and apoptosis, which occurs in the development of PCOS. The paper presents available data on the mechanisms of impact of mitochondrial dysfunction and oxidative stress on IR aggravation, hyperandrogenism, and abnormal folliculogenesis in PCOS. It considers the role of activation of the nuclear factor NF-kB signaling pathway in inflammation and synthesis of proinflammatory cytokines in conjunction with the accumulation of glycation end products and reactive oxygen species in changing steroidogenesis and increasing hyperandrogenism in PCOS.
Conclusion. Thus, the review summarizes the update on the insulin signaling pathways involved in the development of PCOS, which confirm the mutual aggravation and progression of IR and hyperandrogenism.

Keywords

polycystic ovary syndrome
insulin resistance
hyperandrogenism
systemic inflammation
intracellular signaling
insulin
oxidative stress
gluconeogenesis
lipolysis
kisspeptin

References

  1. Azziz R., Carmina E., Chen Z., Dunaif A., Laven J.S., Legro R.S. et al. Polycystic ovary syndrome. Nat. Rev. Dis. Primers. 2016; 2: 16057. https://dx.doi.org/10.1038/nrdp.2016.57.
  2. Barber T.M., Hanson P., Weickert M.O, Franks S. Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clin. Med. Insights Reprod. Health. 2019; 13: 1179558119874042. https://dx.doi.org/10.1177/1179558119874042.
  3. Найдукова А.А., Каприна Е.К., Донников А.Е., Чернуха Г.Е. Генетические аспекты формирования синдрома поликистозных яичников. Акушерство и гинекология. 2016; 3: 16-22. [Naidukova A.A., Kaprina E.K., Donnikov A.E., Chernukha G.E. Genetic aspects of polycystic ovary syndrome's formation Obstetrics and Gynegology. 2016; 3: 16-22. (in Russian)]. https://dx.doi.org/10.18565/aig.2016.3.16-22.
  4. Teede H.J., Misso M.L., Costello M.F., Dokras A., Laven J., Moran L. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clin. Endocrinol. 2018; 89(3): 251-68. https://dx.doi.org/10.1111/cen.13795.
  5. Hochberg Z., Feil R., Constancia M., Fraga M., Junien C., Carel J.C. et al. Child health, developmental plasticity, and epigenetic programming. Endocr. Rev. 2011; 32(2): 159-224. https://dx.doi.org/10.1210/er.2009-0039.
  6. Mohamed-Hussein Z.A., Harun S. Construction of a polycystic ovarian syndrome (PCOS) pathway based on the interactions of PCOS-related proteins retrieved from bibliomic data. Theor. Biol. Med. Model. 2009; 6: 18. https://dx.doi.org/10.1186/1742-4682-6-18.
  7. Чернуха Г.Е., Найдукова А.А., Удовиченко М.А., Каприна Е.К., Иванец Т.Ю. Андрогенный профиль пациенток с синдромом поликистозных яичников и его взаимосвязь с метаболической дисфункцией. Акушерство и гинекология. 2019; 11: 122-8. [Chernukha G.E., Naidukova A.A., Udovichenko M.A., Kaprina E.K., Ivanets T.Yu. Androgen profile in patients with polycystic ovary syndrome and its association with metabolic dysfunction. Obstetrics and Gynegology. 2019; 11: 122-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.11.122-128.
  8. Moore A.M., Coolen L.M., Porter D.T., Goodman R.L., Lehman M.N. KNDy cells revisited. Endocrinology. 2018; 159(9): 3219-34. https://dx.doi.org/10.1038/s41598-018-20563-2.
  9. Coutinho E.A., Kauffman A.S. The role of the brain in the pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS). Med. Sci. 2019; 7: 84. https://dx.doi.org/10.3390/medsci7080084.
  10. Feng C., Jin Z., Sun L., Wang X., Zhang X., Lian S. Endogenous SHBG levels correlate with that of glucose transporters in insulin resistance model cells. Mol. Biol. Rep. 2019; 46(5): 4953-65. https://dx.doi.org/10.1007/s11033-019-04946-w.
  11. Григорян О.Р., Жемайте Н.С., Волеводз Н.Н., Андреева Е.Н., Мельниченко Г.А., Дедов И.И. Отдаленные последствия синдрома поликистозных яичников. Терапевтический архив. 2017; 89(10): 75-9. [Grigoryan O.R., Zhemaite N.S., Volevodz N.N., Andreeva E.N., Melnichenko G.A., Dedov I.I. Long-term consequences of polycystic ovary syndrome. Therapeutic Archive. 2017; 89(10): 75-9. (in Russian)]. https://dx.doi.org/10.17116/terarkh2017891075-79.
  12. Дедов И.И., Бутрова С.А. Синдром поликистозных яичников и метаболический синдром. Ожирение и метаболизм. 2006; 3(1): 30-40. [Dedov I.I., Butrova S.A. Polycystic ovary syndrome and metabolic syndrome. Obesity and Metabolism. 2006; 3(1): 30-40. (in Russian)].
  13. Virtue S., Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim. Biophys. Acta. 2010; 1801(3): 338-9. https://dx.doi.org/10.1016/j.bbalip.2009.12.006.
  14. Dumesic D.A., Phan J.D., Leung K.L., Grogan T.R., Ding X., Li X. et al. Adipose insulin resistance in normal-weight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2019; 104(6): 2171-83. https://dx.doi.org/10.1210/jc.2018-02086.
  15. Trottier A., Battista M.C., Geller D.H., Moreau B., Carpentier A.C., Simoneau-Roy J., Baillargeon J.P. Adipose tissue insulin resistance in peripubertal girls with first-degree family history of polycystic ovary syndrome. Fertil. Steril. 2012; 98(6): 1627-34. https://dx.doi.org/10.1016/j.fertnstert.2012.08.025.
  16. O’Reilly M.W., Kempegowda P., Walsh M., Taylor A.E., Manolopoulos K.N., Allwood J.W. et al. AKR1C3-mediated adipose androgen generation drives lipotoxicity in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2017; 102(9): 3327-39. https://dx.doi.org/10.1210/jc.2017-00947.
  17. Zeng X., Xie Y.J., Liu Y.T., Long S.L., Mo Z.C. Polycystic ovarian syndrome: correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta. 2020; 502: 214-21. https://dx.doi.org/10.1016/j.cca.2019.11.003.
  18. Barber T.M., McCarthy M.I., Franks S., Wass J.A. Metabolic syndrome in polycystic ovary syndrome. Endokrynol. Pol. 2007; 58: 34-41.
  19. Munir I., Yen H.W., Geller D.H., Torbati D., Bierden R.M., Weitsman S.R. et al. Insulin augmentation of 17α-hydroxylase activity is mediated by phosphatidyl inositol 3-kinase but not extracellular signal-regulated kinase-1/2 in human ovarian theca cells. Endocrinology. 2004; 145(1): 175-83. https://dx.doi.org/10.1210/en.2003-0329.
  20. Dumesic D.A., Phan J.D., Leung K.L., Grogan T.R., Ding X., Li X. et al. Adipose insulin resistance in normal-weight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2019; 104(6): 2171-83. https://dx.doi.org/10.1210/jc.2018-02086.
  21. Li X., Cui P., Jiang H.Y., Guo Y.R., Pishdari B., Hu M., Feng Y. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action. Am. J. Transl. Res. 2015; 7(3): 574-86.
  22. Mioni R., Chiarelli S., Xamin N., Zuliani L., Granzotto M., Mozzanega B. et al. Evidence for the presence of glucose transporter 4 in the endometrium and its regulation in polycystic ovary syndrome patients. J. Clin. Endocrinol. Metab. 2004; 89(8): 4089-96. https://dx.doi.org/10.1210/jc.2003-032028.
  23. Nakae J., Oki M., Cao Y. The FoxO transcription factors and metabolic regulation. FEBS Lett. 2008: 582(1): 54-67. https://dx.doi.org/10.1016/j.febslet.2007.11.025.
  24. Zhang H.Y., Zhang Y.F., Han Y.K., Xue F.X., Zhao X.H., Zhang X.L. Activation and significance of the PI3K/Akt pathway in endometrium with polycystic ovary syndrome patients. Zhonghua Fu Chan Ke Za Zhi. 2012: 47(1): 19-23.
  25. Oleszczak B., Szablewski L., Pliszka M., Głuszak O., Stopinska-Głuszak U. Transport of deoxy-d-glucose into lymphocytes of patients with polycystic ovary syndrome. Endocrine. 2014; 47(2): 618-24. https://dx.doi.org/10.1007/s12020-014-0174-5.
  26. Witchel S.F., Oberfield S.E. Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls. J. Endocr. Soc. 2019; 3(8): 1545-73. https://dx.doi.org/10.1210/js.2019-00078.
  27. Li H., Chen Y., Yan L.Y., Qiao J. Increased expression of P450scc and CYP17 in development of endogenous hyperandrogenism in a rat model of PCOS. Endocrine. 2012; 43(1): 184-90. https://dx.doi.org/10.1007/s12020-012-9739-3.
  28. Gonzalez E., Guengerich F.P. Kinetic processivity of the two-step oxidations of progesterone and pregnenolone to androgens by human cytochrome P450 17A1. J. Biol. Chem. 2017: 292(32): 13168-85. https://dx.doi.org/10.1074/jbc.M117.794917.
  29. Auchus R.J. The backdoor pathway to dihydrotestosterone. Trends Endocrinol. Metab. 2004; 15(9): 432-8.
  30. Harlow C.R., Shaw H.J., Hillier S.G., Hodges J.K. Factors influencing follicle-stimulating hormone-responsive steroidogenesis in marmoset granulosa cells: effects of androgens and the stage of follicular maturity. Endocrinology. 1988; 122(6): 2780-7.
  31. Jeppesen J.V., Kristensen S.G., Nielsen M.E., Humaidan P., Dal Canto M., Fadini R. et al. LH-receptor gene expression in human granulosa and cumulus cells from antral and preovulatory follicles. J. Clin. Endocrinol. Metab. 2012; 97(8): 1524-31. https://dx.doi.org/10.1530/repabs.1.P352.
  32. Webber L.J., Stubbs S., Stark J., Trew G.H., Margara R., Hardy K., Franks S. Formation and early development of follicles in the polycystic ovary. Lancet. 2003; 362(9389): 1017-21. https://dx.doi.org/10.1016/s0140-6736(03)14410-8.
  33. Stanek M.B., Borman S.M., Molskness T.A., Larson J.M., Stouffer R.L., Patton P.E. Insulin and insulin-like growth factor stimulation of vascular endothelial growth factor production by luteinized granulosa cells: comparison between polycystic ovarian syndrome (PCOS) and non-PCOS women. J. Clin. Endocrinol. Metab. 2007: 92(7): 2726-33. https://dx.doi.org/10.1210/jc.2006-2846.
  34. Ng E.H.Y., Chan C.C.W., Yeung W.S.B., Ho P.C. Comparison of ovarian stromal blood flow between fertile women with normal ovaries and infertile women with polycystic ovary syndrome. Hum. Reprod. 2005; 20(7): 1881-6. https://dx.doi.org/10.1093/humrep/deh853.
  35. Khashchenko E., Vysokikh M., Uvarova E., Krechetova L., Vtorushina V., Ivanets T.,Volodina M., Tarasova N., Sukhanova I., Sukhikh G. Activation of systemic inflammation and oxidative stress in adolescent girls with polycystic ovary syndrome in combination with metabolic disorders and excessive body weight. J. Clin. Med. 2020; 9(5): 1399. https://dx.doi.org/10.3390/jcm9051399.
  36. Lee D.Y. Roles of mTOR signaling in brain development. Exp. Neurobiol. 2015; 24(3): 177-85. https://dx.doi.org/10.5607/en.2015.24.3.177.
  37. Skov V., Glintborg D., Knudsen S., Jensen T., Kruse T.A., Tan Q. et al. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes. 2007; 56(9): 2349-55. https://dx.doi.org/10.2337/db07-0275.
  38. Захаров И.С., Букреева Е.Л. Оксидативный стресс при синдроме поликистозных яичников: прогностическое значение, возможности коррекции. Гинекология. 2018; 20(1): 35-8. [Zakharov I.S., Bukreeva E.L. Oxidative stress in the syndrome of polycystic ovaries: prognostic value, correction possibilities. Gynecology. 2018; 20(1): 35-8. (in Russian)]. https://dx.doi.org/10.26442/2079-5696_20.1.35-38.
  39. Zhang J., Bao Y., Zhou X., Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019; 17: 67. https://dx.doi.org/10.1186/s12958-019-0509-4.
  40. Liu A.L., Liao H.Q., Li Z.L., Liu J., Zhou C.L., Guo Z.F. et al. New insights into mTOR signal pathways in ovarian-related diseases: polycystic ovary syndrome and ovarian cancer. Asian Pac. Cancer Prev. 2016; 17(12): 5087-94. https://dx.doi.org/10.22034/APJCP.2016.17.12.5087.
  41. Johnson S.C., Rabinovitch P.S., Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013; 493(7432): 338-45. https://dx.doi.org/10.1038/nature11861.
  42. Roa J., Garcia-Galiano D., Varela L., Sánchez-Garrido M.A., Pineda R., Castellano J.M. et al. The mammalian target of rapamycin as novel central regulator of puberty onset via modulation of hypothalamic Kiss1 system. Endocrinology. 2009; 150(11): 5016-26. https://dx.doi.org/10.1210/en.2009-0096.
  43. Smith J.T., Acohido B.V., Clifton D.K., Steiner R.A. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J. Neuroendocrinol. 2006; 18(4): 298-303. https://dx.doi.org/10.1111/j.1365-2826.2006.01417.x.
  44. Morrison C.D., Xi X., White C.L., Ye J., Martin R.J. Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism. Am. J. Physiol. Endocrinol. Metab. 2007; 293(1): E165-E171. https://dx.doi.org/10.1152/ajpendo.00675.2006.
  45. Yaba A., Demir N. The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J. Ovarian Res. 2012; 5(1): 38. https://dx.doi.org/10.1186/1757-2215-5-38.
  46. Yaba A., Bianchi V., Borini A., Johnson J.A. Putative mitotic checkpoint dependent on mTOR function controls cell proliferation and survival in ovarian granulosa cells. Reprod. Sci. 2008; 152: 128-38. https://dx.doi.org/10.1177/1933719107312037.
  47. Song X., Shen Q., Fan L., Yu Q., Jia X., Sun Y. et al. Dehydroepiandrosterone-induced activation of mTORC1 and inhibition of autophagy contribute to skeletal muscle insulin resistance in a mouse model of polycystic ovary syndrome. Oncotarget. 2018; 9(15): 11905-21. https://dx.doi.org/10.18632/oncotarget.24190.

Received 13.10.2020

Accepted 15.02.2021

About the Authors

Irina S. Belova, medical resident, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. E-mail: irsenb@inbox.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.
Elena P. Khashchenko, senior researcher at the Department of Pediatric Gynecology, Academician V.I. Kulakov National Medical Research Center for Obstetrics,
Gynecology and Perinatology, Ministry of Health of Russia. E-mail: khashchenko_elena@mail.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.
Elena V. Uvarova, MD, PhD, Professor, Head of the Department of Pediatric Gynecology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. E-mail: elena-uvarova@yandex.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.

For citation: Belova I.S., Khashchenko E.P., Uvarova E.V. Current aspects of the role of insulin resistance, systemic inflammation, and oxidative stress in the pathogenesis of hyperandrogenism and abnormal folliculogenesis in patients with polycystic ovary syndrome.
Akusherstvo i Ginekologiya/ Obstetrics and gynecology. 2021; 5: 55-63 (in Russian)
https://dx.doi.org/10.18565/aig.2021.5.55-63

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.