The state of and prospects for the introduction of artificial intelligence technologies in obstetric and gynecological practice
The authors have carried out a systematic review of the literature devoted to the current state of and prospects for the use of artificial intelligence (AI) in the field of maternal and fetal health. They have revealed the concept of AI and the ways of its development in medicine. It has been noted that AI does not replace a physician, but it is a tool for improving medical activity. The article shows the possibilities of AI use in obstetrics and gynecology and highlights its areas: medical image recognition; prediction and assistance to physicians in determining the diagnosis; creation of recommendation systems for selecting a treatment; robotization of medical manipulations and augmented reality; optimization of the routine functions of healthcare workers; services for interaction and training of physicians and patients. In addition, AI can be used for scientific purposes to understand complex multifactorial mechanisms for the development of diseases; to create disease information models, new classifications of diseases, and models of therapeutic effects. AI is also able to automatically retrieve new medical information from clinical case reports and scientific publications. The paper gives specific examples of developments in these areas. It considers the expected difficulties in introducing AI systems and describes immediate steps for their implementation. The development of AI systems requires physicians’ direct participation, including the selection and preparation of data, the formulation of medical tasks, and their translation into the language of machine learning specialists. It is concluded that AI-based applications in obstetrics and gynecology have already become a reality, and in the near future they will reduce the burden on medical professionals, improve the effectiveness of diagnosis, prediction, and treatment, and prevent medical errors. It is promising to use AI in telemedicine systems to provide assistance to physicians and patients outside the locations of large medical complexes.Sukhikh G.T., Davydov D.G., Loginov V.V., Baev O.R., Prikhodko A.M., Sheshko E.L., Chmykhova E.V.
Conclusion. The results of the review can be used to identify promising researches, to develop a national program for AI introduction in obstetric and gynecological practice and in educational programs, and to improve the qualification of healthcare workers.
Keywords
artificial intelligence
obstetrics
gynecology
machine learning
pregnancy
childbirth
decision support system
References
- Emin E.I., Emin E., Papalois A., Willmott F., Clarke S., Sideris M. Artificial intelligence in obstetrics and gynaecology: Is this the way forward? In Vivo. 2019; 33(5): 1547-51. https://dx.doi.org/10.21873/invivo.11635.
- Makary M.A., Daniel M. Medical error-the third leading cause of death in the US. BMJ. 2016; 353: i2139. https://dx.doi.org/10.1136/bmj.i2139.
- Davidson L., Boland M.R. Enabling pregnant women and their physicians to make informed medication decisions using artificial intelligence. J. Pharmacokinet. Pharmacodyn. 2020; 47(4): 305-18. http://dx.doi.org/10.1007/s10928-020-09685-1.
- Yeo L., Romero R. Fetal Intelligent Navigation Echocardiography (FINE): A novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet. Gynecol. 2013; 42(3): 268-84. https://dx.doi.org/10.1002/uog.12563.
- Garcia-Canadilla P., Sanchez-Martinez S., Crispi F., Bijnens B. Machine learning in fetal cardiology: what to expect. Fetal Diagn. Ther. 2020; 47(5): 363-72. https://dx.doi.org/10.1159/000505021.
- Twickler D.M., Do Q.N., Xi Y., Shahedi M., Dormer J., Anusha Devi T.T. et al. 228: Automated segmentation of the human placenta and uterus with MR imaging using artificial intelligence (AI). Am. J. Obstet. Gynecol. 2020; 222(1): S158-9. https://dx.doi.org/10.1016/j.ajog.2019.11.244.
- Zaninovic N., Elemento O., Rosenwaks Z. Artificial intelligence: its applications in reproductive medicine and the assisted reproductive technologies. Fertil. Steril. 2019; 112(1): 28-30. https://dx.doi.org/10.1016/j.fertnstert.2019.05.019.
- Сысоева А.П., Макарова Н.П., Калинина Е.А., Скибина Ю.С., Занишевская А.А., Янчук Н.О., Грязнов А.Ю. Повышение эффективности вспомогательных репродуктивных технологий с помощью искусственного интеллекта и машинного обучения на эмбриологическом этапе. Акушерство и гинекология. 2020; 7: 28-36. [Sysoeva A.P., Makarova N.P., Kalinina E.A., Skibina Yu.S., Zanishevskaya A.A., Yanchuk N.O.,Gryaznov A.Yu. Enhancing the efficiency of assisted reproductive technologies using artificial intelligence and machine learning at the embryological stage. Obstetrics and Gynegology/Akusherstvo i ginekologiya. 2020; 7: 28-36.in Russian)]. https://dx.doi.org/10.18565/aig.2020.7.28-36.
- Cohn K.H., Copperman A.B., Zhang Q., Beim P.Y. Leveraging artificial intelligence for more data-driven patient counseling after failed IVF cycles. Fertil. Steril. 2017; 108(3): e53-4. https://dx.doi.org/10.1016/j.fertnstert.2017.07.171.
- Ibrahim A., Gamble P., Jaroensri R., Abdelsamea M.M., Mermel C.H., Chen P.C., Rakha E.A. Artificial intelligence in digital breast pathology: Techniques and applications. Breast. 2020; 49: 267-73. https://dx.doi.org/10.1016/j.breast.2019.12.007.
- Bogani G., Rossetti D., Ditto A., Martinelli F., Chiappa V., Mosca L. et al. Artificial intelligence weights the importance of factors predicting complete cytoreduction at secondary cytoreductive surgery for recurrent ovarian cancer. J. Gynecol. Oncol. 2018; 29(5): e66. https://dx.doi.org/10.3802/jgo.2018.29.e66.
- Abdalla N., Winiarek J., Bachanek M., Cendrowski K., Sawicki W. Clinical, ultrasound parameters and tumor marker-based mathematical models and scoring systems in pre-surgical diagnosis of adnexal tumors. Ginekol. Pol. 2016; 87(12): 824-9. https://dx.doi.org/10.5603/GP.2016.0096.
- Elias K.M., Fendler W., Stawiski K., Fiascone S.J., Vitonis A.F., Berkowitz R.S. et al. Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. Elife. 2017; 6: e28932. https://dx.doi.org/10.7554/eLife.28932.
- Burton R.J., Albur M., Eberl M., Cuff S.M. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med. Inform. Decis. Mak. 2019; 19(1): 171. https://dx.doi.org/10.1186/s12911-019-0878-9.
- Kyrgiou M., Pouliakis A., Panayiotides J.G., Margari N., Bountris P., Valasoulis G. et al. Personalised management of women with cervical abnormalities using a clinical decision support scoring system. Gynecol. Oncol. 2016; 141(1): 29-35. https://dx.doi.org/10.1016/j.ygyno.2015.12.032.
- Gadagkar A.V., Shreedhara K.S. Features based IUGR diagnosis using variational level set method and classification using artificial neural networks. In: Proceedings – 2014 5th International conference on signal and image processing. (ICSIP 2014). Bangalore, India 8-10 January; 2014: 303-10.
- Balayla J., Shrem G. Use of artificial intelligence (AI) in the interpretation of intrapartum fetal heart rate (FHR) tracings: a systematic review and meta-analysis. Arch. Gynecol. Obstet. 2019; 300(1): 7-14. https://dx.doi.org/10.1007/s00404-019-05151-7.
- Desai G.S. Artificial intelligence: the future of obstetrics and gynecology. J. Obstet. Gynaecol. India. 2018; 68(4): 326-7. https://dx.doi.org/10.1007/s13224-018-1118-4.
- Brocklehurst P.; INFANT Collaborative Group. A study of an intelligent system to support decision making in the management of labour using the cardiotocograph – the INFANT study protocol. BMC Pregnancy Childbirth. 2016; 16: 10. https://dx.doi.org/10.1186/s12884-015-0780-0.
- Fergus P., Hussain A., Al-Jumeily D., Huang D.S., Bouguila N. Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms. Biomed. Eng. Online. 2017; 16(1): 89. https://dx.doi.org/10.1186/s12938-017-0378-z.
- Scerri M., Grech V. Artificial intelligence in medicine. Early Hum. Dev. 2020; 145: 105017. https://dx.doi.org/10.1016/j.earlhumdev.2020.105017.
- Kazantsev A., Ponomareva J., Kazantsev P., Digilov R., Huang P. Development of e-health network for in-home pregnancy surveillance based on artificial intelligence. In: Proceedings of 2012 IEEE-EMBS International conference on biomedical and health informatics. Hong Kong, China; 2012: 82-4. https://dx.doi.org/10.1109/BHI.2012.6211511.
- Nodelman E., Molitoris J., Holbert M. Using artificial intelligence to predict spontaneous preterm delivery. Am. J. Obstet. Gynecol. 2020; 222(1, Suppl.): S350. (SMFM 40th Annual Meeting – The Pregnancy Meeting. 3–8 February 2020. Gaylord Texan Resort & Conference Center, Grapevine, Texas).
- Yeh J. The potential for improvements in women’s health using artificial intelligence (AI) technology. Preface. Curr. Womens Health Rev. 2018; 14(1): 2.
- Shen J.Y., Chen J.B., Liu Z.R., Zhang C., Liu Q., Ming W.K. AI1 An innovative artificial intelligence application in disease screening: an opportunity to improve maternal health care in an underdeveloped rural area. Value Health. 2019; 22(Suppl. 2): S34. (ISPOR 2019: May 18–22 2019, New Orleans, LA, USA).
- Bruno V., Biasiotti M., D'Orazio M., Pietropolli A., P Abundo P., Ticconi C. et al. Artificial intelligence (AI) based-method applied in recurrent pregnancy loss (RPL) patients diagnostic work-up and classification: a potential innovation in common clinical practice. Hum. Reprod. 2019; 34 (Suppl. 1): i55-6. (Abstracts of the 35th Annual Meeting of the European Society of Human Reproduction and Embryology).
- Hamilton E.F., Dyachenko A., Ciampi A., Maurel K,. Warrick P.A., Garite T.J. Estimating risk of severe neonatal morbidity in preterm births under 32 weeks of gestation. J. Matern. Neonatal Med. 2020; 33(1): 73-80. https://dx.doi.org/10.1080/14767058.2018.1487395.
- Iftikhar P., Kuijpers M.V., Khayyat A., Iftikhar A., DeGouvia De Sa M. Artificial intelligence: a new paradigm in obstetrics and gynecology research and clinical practice. Cureus. 2020; 12(2): e7124. https://dx.doi.org/10.7759/cureus.7124.
- Bahado-Singh R.O., Sonek J., McKenna D., Cool D., Aydas B., Turkoglu O. et al. Artificial intelligence and amniotic fluid multiomics: prediction of perinatal outcome in asymptomatic women with short cervix. Ultrasound Obstet. Gynecol. 2019; 54(1): 110-8. https://dx.doi.org/10.1002/uog.20168.
- Akbulut A., Ertugrul E., Topcu V. Fetal health status prediction based on maternal clinical history using machine learning techniques. Comput. Methods Programs Biomed. 2018; 63: 87-100. https://dx.doi.org/10.1016/j.cmpb.2018.06.010.
- Paydar K., Niakan Kalhori S.R., Akbarian M., Sheikhtaheri A. A clinical decision support system for prediction of pregnancy outcome in pregnant women with systemic lupus erythematosus. Int. J. Med. Inform. 2017; 97: 239-46. https://dx.doi.org/10.1016/j.ijmedinf.2016.10.018.
- VerMilyea M.D., Don Perugini, Murphy A P., Tuc Ngyuen, Cecilia Rios. et al.Artificial intelligence: non-invasive detection of morphological features associated with abnormalities in chromosomes 21 and 16. Fertil. Steril. 2019; 112(3, Suppl.): e237-8. (75th Scientific Congress of the American Society for Reproductive Medicine. 12-16 October 2019. Philadelphia, Pennsylvania). https://dx.doi.org/10.1016/j.fertnstert.2019.07.1366.
- Idowu I.O., Fergus P., Hussain A., Dobbins C., Khalaf M., Eslava R.V.C., Keight R. Artificial intelligence for detecting preterm uterine activity in gynacology and obstertric care. In: IEEE International conference on computer and information technology; ubiquitous computing and communications; dependable, autonomic and secure computing; pervasive intelligence and computing (CIT/IUCC/DASC/PICOM). 2015: 215-20.
- Blinov P., Avetisian M., Kokh V., Umerenkov D., Tuzhilin A.Predicting clinical diagnosis from patients electronic health records using BERT-based neural networks. In: Michalowski M., Moskovitch R., eds. Artificial intelligence in medicine. 18th International conference on artificial intelligence in medicine, AIME 2020, Minneapolis, MN, USA, August 25-28, 2020, Proceedings; 2020: 111-21.
- Shahid N., Rappon T., Berta W. Applications of artificial neural networks in health care organizational decision-making: A scoping review. PLoS One. 2019; 14(2): e0212356. https://dx.doi.org/10.1371/journal.pone.0212356.
- Алтухова О.С., Балашов И.С., Горина К.А., Лагутин В.В., Наумов В.А., Боровиков П.И., Ходжаева З.С. Системы поддержки принятия врачебных решений в акушерстве: возможности и перспективы. Акушерство и гинекология. 2020; 7: 5-11. [Altukhova O.S., Balashov I.S., Gorina K.A., Lagutin V.V., Naumov V.A., Borovikov P.I., Khodzhaeva Z.S. Medical decision support systems in obstetrics: opportunities and prospects. 2020; 7: 5-11. Obstetrics and Gynecology/Akusherstvo i ginekologiya. 2020; 7: 5-11. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.7.5-11.
- Jurisica I., Mylopoulos J., Glasgow J., Shapiro H., Casper R.F. Case-based reasoning in IVF: Prediction and knowledge mining. Artif. Intell. Med. 1998; 12(1): 1-24. 10.1016/s0933-3657(97)00037-7.
- Rusch P., Kimmig R. Robotics – „smart medicine“ in der minimal-invasiven gynäkologischen Chirurgie. Der Gynäkologe. 2020; 53(9): 607-13. https://doi.org/10.1007/s00129-020-04614-2.
- Tanwani A.K., Sermanet P., Yan A., Anand R., Phielipp M., Goldberg K. Motion2Vec: semi-supervised representation learning from surgical videos. In: Proceedings – IEEE International conference on robotics and automation (ICRA). Online. Paris, France; June 2020.
- Moawad G., Tyan P., Louie M. Artificial intelligence and augmented reality in gynecology. Curr. Opin. Obstet. Gynecol. 2019; 31(5): 345-8. https://dx.doi.org/10.1097/GCO.0000000000000559.
- Johnson M., Lapkin S., Long V., Sanchez P., Suominen H., Basilakis J., Dawson L. A systematic review of speech recognition technology in health care. BMC Med. Inform. Decis. Mak. 2014; 94. https://dx.doi.org/10.1186/1472-6947-14-94.
- Hamet P., Tremblay J. Artificial intelligence in medicine. Metabolism. 2017; 69(Suppl.): S36-40. https://dx.doi.org/10.1016/j.metabol.2017.01.011.
- Butow P., Hoque E. Using artificial intelligence to analyse and teach communication in healthcare. Breast. 2020; 50: 49-55. https://dx.doi.org/10.1016/j.breast.2020.01.008.
- Wallace B.C., Dahabreh I.J., Trikalinos T.A., Laws M.B., Wilson I., Charniak E. Identifying differences in physician communication styles with a log-linear transition component model. In: Proceedings of the twenty-eighth AAAI conference on artificial intelligence. July 27–31, 2014, Québec City, Québec, Canada. 2014: 1314-20.
- Ryan P., Luz S., Albert P., Vogel C., Normand C., Elwyn G. Using artificial intelligence to assess clinicians’ communication skills. BMJ. 2019; 364: l161. https://dx.doi.org/10.1136/bmj.l161.
- Razzaki S., Baker A., Perov Y., Middleton K., Baxter J., Mullarkey D. et al. A comparative study of artificial intelligence and human doctors for the purpose of triage and diagnosis. June 2018. Available at: https://arxiv.org. 2018.
- Comendador B.E.V., Francisco B.M.B., Medenilla J.S., Nacion S.M.T., Serac T.B.E. Pharmabot: A pediatric generic medicine consultant chatbot. J. Autom. Control Eng. 2015; 3(2): 137-40. https://dx.doi.org/10.12720/joace.3.2.137-140.
- Ni L., Lu C., Liu N., Liu J. MANDY: Towards a smart primary care chatbot application. In: Knowledge and Systems Sciences: Proceedings 18th International symposium, KSS 2017. Bangkok, Thailand, November 17–19, 2017. Springer; 2017: 38-52.
- Diaz Z.M.R., Muka T., Franco O.H. Personalized solutions for menopause through artificial intelligence: Are we there yet? Maturitas. 2019; 129: 85-6. https://dx.doi.org/10.1016/j.maturitas.2019.07.006.
- Shaywitz D.A. I doesn’t ask why – but physicians and drug developers want to know. [Electronic resource]. 2018. Available at: https://www.forbes.com/sites/davidshaywitz/2018/11/09/ai-doesnt-ask-why-but-physicians-and-drug-developers-want-to-know/#3733e579208d. Accessed 23.09.2020.
- Gilvary C., Madhukar N., Elkhader J., Elemento O. The missing pieces of artificial intelligence in medicine. Trends Pharmacol. Sci. 2019; 40(8): 555-64. https://dx.doi.org/10.1016/j.tips.2019.06.001.
Received 22.12.2020
Accepted 11.01.2021
About the Authors
Gennady T. Sukhikh, Dr. Med. Sci., Professor, Academician of the RAS, Director of Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. Tel.: +7(495)438-18-00. E-mail: g_sukhikh@oparina4.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.Denis G. Davydov, PhD, Associate professor, Open University of Humanities and Economics. Tel: +7(926)120-85-22. E-mail: dgdavydov19@gmail.com.
109029, Russia, Moscow, Nizhegorodskaya str., 32-4.
Viktor V. Loginov, PhD, Head of Laboratory of Neurophysiology, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. Tel.: +7(495)316-13-75. E-mail: v_loginov@oparina4.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.
Oleg R. Baev, Dr. Med. Sci., professor, Head of Maternity Department, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; professor of the Department of Obstetrics, Gynecology, Perinatology, and Reproductology, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia. Tel: +7(495)438-11-88. E-mail: o_baev@oparina4.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.
Andrey M. Prikhodko, PhD, physician of the Maternity Department, assistant of the Department of Obstetrics and Gynecology, researcher of the Innovative Technologies Department of Obstetrics Institute, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. Tel.: +7(495)438-30-47. E-mail: a_prikhodko@oparina4.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.
Elena L. Sheshko, PhD, Head of the Department of Project Organization, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. Tel.: +7(495)531-44-44 ext. 1113. E-mail: e_sheshko@oparina4.ru. 117997, Russia, Moscow, Ac. Oparina str., 4.
Ekaterina V. Chmykhova, PhD, Head of Research, Electronic Education LLC. Tel.: +7(495)638-29-12. E-mail: katrinchm@yandex.ru. 129090, Russia, Moscow, Prospect Mira ave., 14-1.
For citation: Sukhikh G.T., Davydov D.G., Loginov V.V., Baev O.R., Prikhodko A.M., Sheshko E.L., Chmykhova E.V. The state of and prospects for the introduction of artificial intelligence technologies in obstetric and gynecological practice.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2021; 2: 5-12 (in Russian)
https://dx.doi.org/10.18565/aig.2021.2.5-12