A systematic review of experimental and clinical studies on the pharmacology of glycyrrhizin and its derivatives
Glycyrrhizin and its derivatives (glycyrrhizic acid, etc.) are the key components of licorice root extracts (licorice) which can have anti-inflammatory and antiviral effects. A systematic analysis of 3264 publications on the studies of glycyrrhizin and its derivatives made it possible to characterize the range of pharmacological applications of drugs based on glycyrrhizin. The study highlights a number of relevant molecular and cellular mechanismsGromova O.A., Torshin I.Yu., Tetruashvili N.K.
of action of glycyrrhizin, including regulation of the activity of T-lymphocytes, mast cells, neutrophils, macrophages, biosynthesis and secretion of pro-inflammatory and anti-inflammatory cytokines, lipoxins and prostaglandins. Glycyrrhizin dose-dependently activates receptor LXRa, inhibits the production of pro-inflammatory cytokines IL-6 and IL-8, suppresses the increased expression of HMGB1 receptor and pro-inflammatory cytokines TNF, IL-1ß and IL-6, blocks the NFkB-dependent signaling pathways MAPK and PI3K/Akt, inducible nitric oxide synthase, COX-2. Topical application of glycyrrhizin and its derivatives is promising for the treatment of inflammatory diseases of the mucous membranes and skin, including the diseases of bacterial, fungal and viral origin (allergic contact dermatitis, eczema, keratitis caused by Pseudomonas aeruginosa, papillomavirus, herpes virus (as well as herpes simplex, varicella zoster), SARS-CoV-2, etc. Glycyrrhizin and its derivatives inhibit the formation of biofilms of bacteria characterized by increased resistance to antibiotics and even to antiseptics. Due to the fact that glycyrrhizin induces CD4+ T-cells, it suppresses the production of type 2 cytokines and increases resistance to candidiasis. The study also describes the prospects for the use of glycyrrhizin in the treatment
of genital warts.
Conclusion: The results of the basic and clinical studies presented in this paper show the prospects for topical application of glycyrrhizin in various fields of medicine, including gynecological practice.
Keywords
glycyrrhizin
glycyrrhizic acid
systematic analysis
multidirectional action of drugs
genital herpes
papillomavirus
herpes zoster
topical application
Epigen Intim
References
- Hosseinzadeh H., Nassiri-Asl M. Pharmacological Effects of Glycyrrhiza spp. and Its Bioactive Constituents: Update and Review. Phytother Res. 2015; 29(12):1868-86. https://dx.doi.org/10.1002/ptr.5487.
- Markov A.V., Sen'kova A.V., Warszycki D., Salomatina O.V., Salakhutdinov N.F., Zenkova M.A., Logashenko E.B. Soloxolone methyl inhibits influenza virus replication and reduces virus-induced lung inflammation. Sci Rep. 2017; 7(1):13968. https://dx.doi.org/10.1038/s41598-017-14029-0.
- Pоzzo G. Clinical data on topical use of glycyrrhizic acid in dermatology].G Ital Dermatol. 1957; 98(2):191-7.
- Торшин И.Ю., Громова О.А., Стаховская Л.В., Ванчакова Н.П., Галустян А.Н., Кобалава Ж.Д., Гришина Т.Р., Громов А.Н., Иловайская И.А., Коденцова В.М., Калачева А.Г., Лиманова О.А., Максимов В.А., Малявская С.И., Мозговая Е.В., Тапильская Н.И., Рудаков К.В., Семенов В.А. Анализ 19,9 млн публикаций базы данных PubMed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2020; 13(2): 146-63. [Torshin I.Yu., Gromova O.A., Stakhovskaya L.V., Vanchakova N.P., Galustyan A.N., Kobalava Zh.D., Grishina T.R., Gromov A.N., IlovaiskayaI A., Kodentsova V.M., Kalacheva A.G., Limanova O.A., Maksimov V.A., Malyavskaya S.I., Mozgovaya E.V., Tapilskaya N.I., Rudakov K.V., Semenov V.A. Analysis of 19.9 million publications of the PubMed/MEDLINE database using artificial intelligence methods: approaches to summarizing the accumulated data and the “fake news” phenomenon. Pharmacoeconomics. Modern pharmacoeconomics and pharmacoepidemiology. 2020; 13(2): 146-63. (in Russian)]. https://doi.org/10.17749/2070-4909/farmakoekonomika.2020.021.
- Zitnik M., Agrawal M., Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics. 2018; 34(13): i457-i466. https://doi.org/10.1093/bioinformatics/bty294.
- Gene Ontology Consortium. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021; 49(D1):D325-D334. https://dx.doi.org/10.1093/nar/gkaa1113.
- Yamamoto T., Hatanaka M., Matsuda J., Kadoya H., Takahashi A., Namba T., Takeji M., Yamauchi A. [Clinical characteristics of five elderly patients with severe hypokalemia induced by glycyrrhizin derivatives].Nihon Jinzo Gakkai Shi. 2010; 52(1): 80-5.
- Tanaka H., Hasegawa T., Matsushita M., Miichi H., Hayashi S. Quantitative evaluation of ocular anti-inflammatory drugs based on measurements of corneal temperature in rabbits: dexamethasone and glycyrrhizin. Ophthalmic Res. 1987; 19(4): 213-20. https://dx.doi.org/10.1159/000265496.
- Толстиков Г.А., Балтина Л.А., Шульц Э.Э., Покровский А.Г. Глицирризиновая кислота Биоорганическая химия. 1997; 23(9): 691-709. [Tolstikov G.A., Baltina L.A., Shul’ts E.E., Pokrovsky A.G. Glycyrrhizic Acid. Bioorganic chemistry. 1997; 23(9): 691-709 (in Russian)].
- Zhang N., Lv H., Shi B.H., Hou X., Xu X. Inhibition of IL-6 and IL-8 production in LPS-stimulated human gingival fibroblasts by glycyrrhizin via activating LXRα. Microb Pathog. 2017; 110: 135-9. https://dx.doi.org/10.1016/j.micpath.2017.06.021.
- Xu M., Min Z., Wei Y. [Glycyrrhizin inhibits IFN-γ-induced CXCL10 by suppressing the JAK/STAT1 signal pathway in HaCaT cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2018; 34(8): 708-13.
- Qiong H., Han L., Zhang N., Chen H., Yan K., Zhang Z., Ma Y., Xu J. Glycyrrhizin improves the pathogenesis of psoriasis partially through IL-17A and the SIRT1-STAT3 axis. BMC Immunol. 2021; 22(1): 34. https://dx.doi.org/10.1186/s12865-021-00421-z.
- Hu Z., Xiao M., Cai H., Li W., Fang W., Long X. Glycyrrhizin regulates rat TMJOA progression by inhibiting the HMGB1-RAGE/TLR4-NF-κB/AKT pathway. J Cell Mol Med. 2022; 26(3): 925-36. https://dx.doi.org/10.1111/jcmm.17149.
- Sun Y., Zhao B., Li Z., Wei J. Beneficial Effects of Glycyrrhizin in Chronic Periodontitis Through the Inhibition of Inflammatory Response. Dose Response. 2020; 18(3):1559325820952660. https://dx.doi.org/10.1177/1559325820952660.
- Liu W., Huang S., Li Y., Li Y., Li D., Wu P., Wang Q., Zheng X., Zhang K. Glycyrrhizic acid from licorice down-regulates inflammatory responses via blocking MAPK and PI3K/Akt-dependent NF-κB signalling pathways in TPA-induced skin inflammation. Medchemcomm. 2018; 9(9):1502-10. https://dx.doi.org/10.1039/c8md00288f.
- Wang X.R., Hao H.G., Chu L. Glycyrrhizin inhibits LPS-induced inflammatory mediator production in endometrial epithelial cells. Microb Pathog. 2017; 109:110-3. https://dx.doi.org/10.1016/j.micpath.2017.05.032.
- Chang C.Z., Wu S.C., Kwan A.L. Glycyrrhizin attenuates Toll like receptor-2, -4 and experimental vasospasm in a rat model. J Immunol Res. 2014; 2014: 740549. https://dx.doi.org/10.1155/2014/740549.
- Abe M., Akbar F., Hasebe A., Horiike N., Onji M. Glycyrrhizin enhances interleukin-10 production by liver dendritic cells in mice with hepatitis .J Gastroenterol. 2003; 38(10): 962-7. https://dx.doi.org/10.1007/s00535-003-1179-7.
- Liang S.B., Hou W.B., Zheng R.X., Liang C.H., Yan L.J., Wang H.N., Cao H.J., Han M., Robinson N., Liu J.P. Compound glycyrrhizin injection for improving liver function in children with acute icteric hepatitis: A systematic review and meta-analysis. Integr Med Res. 2022; 11(1): 100772. https://dx.doi.org/10.1016/j.imr.2021.100772.
- Zhang W., Li T., Zhang X.J., Zhu Z.Y. Hypoglycemic effect of glycyrrhizic acid, a natural non-carbohydrate sweetener, on streptozotocin-induced diabetic mice. Food Funct. 2020; 11(5): 4160-70. https://dx.doi.org/10.1039/c9fo02114k.
- Sen S. Liposome-encapsulated glycyrrhizin alleviates hyperglycemia and glycation-induced iron-catalyzed oxidative reactions in streptozotocin-induced diabetic rats. J Liposome Res. 2022; 1-10. https://dx.doi.org/10.1080/08982104.2022.2036756.
- Eu C.H., Lim W.Y., Ton S.H., bin Abdul Kadir K. Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats. Lipids Health Dis. 2010; 9: 81. https://dx.doi.org/10.1186/1476-511X-9-81.
- Lim W.Y., Chia Y.Y., Liong S.Y., Ton S.H., Kadir K.A., Husain S.N. Lipoprotein lipase expression, serum lipid and tissue lipid deposition in orally-administered glycyrrhizic acid-treated rats. Lipids Health Dis. 2009; 8: 31. https://dx.doi.org/10.1186/1476-511X-8-31.
- Pan Y.L. The effects of glycyrrhizin on acute pancreatitis in mice. Eur Rev Med Pharmacol Sci. 2014; 18(24): 3943-7.
- Hou S., Zheng F., Li Y., Gao L., Zhang J. The protective effect of glycyrrhizic acid on renal tubular epithelial cell injury induced by high glucose. Int J Mol Sci. 2014; 15(9): 15026-43. https://dx.doi.org/10.3390/ijms150915026.
- Wang Y., Zhang Y., Peng G., Han X. Glycyrrhizin ameliorates atopic dermatitis-like symptoms through inhibition of HMGB1. Int Immunopharmacol. 2018; 60: 9-17. https://dx.doi.org/10.1016/j.intimp.2018.04.029.
- Хайрутдинов В.Р., Самцов А.В. Опыт применения эмолента с противовоспалительным эффектом на основе аммония глицирризината в комплексной терапии больных атопическим дерматитом. Вестник дерматологии и венерологии. 2020; 96(6): 29-35. [Khairutdinov V.R., Samtsov A.V. Experience in the use of emollient with anti-inflammatory effect based on ammonium glycyrrhizinate in the complex therapy of patients with atopic dermatitis. Bulletin of dermatology and venereology. 2020; 96(6): 29-35. (in Russian)]. https://doi.org/10.25208/vdv1201.
- Jin N., He J., Wu C., Chen Z., Li Y., Chen J., Lin J. Glycyrrhizic acid assists anti-psoriatic efficacy of a self-deformable curcumin loaded transdermal gel. Pharm Dev Technol. 2022 Feb 20:1-8. https://doi.org/10.1080/10837450.2022.2039943.
- Xiong H., Xu Y., Tan G., Han Y., Tang Z., Xu W., Zeng F., Guo Q. Glycyrrhizin ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice and inhibits TNF-α-induced ICAM-1 expression via NF-κB/MAPK in HaCaT cells. Cell Physiol Biochem. 2015; 35(4):1335-46. https://doi.org/10.1159/000373955.
- Wu W.Z., Zhang F.R. Glycyrrhizin combined with acitretin improve clinical symptom of psoriasis via reducing Th17 cell differentiation and related serum cytokine concentrations.Int J Clin Exp Med. 2015; 8(9):16266-72.
- Yu J.J., Zhang C.S., Coyle M.E., Du Y., Zhang A.L., Guo X., Xue C.C., Lu C. Compound glycyrrhizin plus conventional therapy for psoriasis vulgaris: a systematic review and meta-analysis of randomized controlled trials. Curr Med Res Opin. 2017; 33(2): 279-87. https://doi.org/10.1080/03007995.2016.1254605.
- Shi H.J., Song H.B., Gao Q., Si J.W., Zou Q. Combination of oxymatrine and diammonium glycyrrhizinate significantly mitigates mice allergic contact dermatitis induced by dinitrofluorobenzene. Exp Biol Med (Maywood). 2019; 244(13): 1111-9. https://doi.org/10.1177/1535370219864895.
- Li L., Gao L., Zhao Y. Effect of vitiligo treatment by compound Glycyrrhizin combined with fractional laser and Triamcinolone Acetonide injection on T Lymphocyte subpopulation. Pak J Med Sci. 2022; 38(1): 201-6. https://doi.org/10.12669/pjms.38.1.4412.
- Saeedi M., Morteza-Semnani K., Ghoreishi M.R. The treatment of atopic dermatitis with licorice gel. J Dermatolog Treat. 2003; 14(3):153-7. https://doi.org/10.1080/09546630310014369.
- Rahman S., Sultana S. Glycyrrhizin exhibits potential chemopreventive activity on 12-O-tetradecanoyl phorbol-13-acetate-induced cutaneous oxidative stress and tumor promotion in Swiss albino mice. J Enzyme Inhib Med Chem. 2007; 22(3): 363-9. https://doi.org/10.1080/14756360601074094.
- Kudo T., Okamura S., Zhang Y., Masuo T., Mori M. Topical application of glycyrrhizin preparation ameliorates experimentally induced colitis in rats. World J Gastroenterol. 2011; 17(17): 2223-8. https://doi.org/10.3748/wjg.v17.i17.2223.
- Fu Y., Zhou E., Wei Z., Liang D., Wang W., Wang T., Guo M., Zhang N., Yang Z. Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. FEBS J. 2014; 281(11): 2543-57. https://doi.org/10.1111/febs.12801.
- Li H., Guo D., Zhang L., Feng X. Glycyrrhizin attenuates histamine-mediated MUC5AC upregulation, inflammatory cytokine production, and aquaporin 5 downregulation through suppressing the NF-κB pathway in human nasal epithelial cells. Chem Biol Interact. 2018; 285: 21-6. https://doi.org/10.1016/j.cbi.2018.02.010.
- Wang B.K., Mao Y.L., Gong L., Xu X., Jiang S.Q., Wang Y.B., Li W.F. Glycyrrhizic acid activates chicken macrophages and enhances their Salmonella-killing capacity in vitro. J Zhejiang Univ Sci B. 2018; 19(10): 785-95. https://doi.org/10.1631/jzus.B1700506.
- Sheikhi S., Khamesipour A., Radjabian T., Ghazanfari T., Miramin Mohammadi A. Immunotherapeutic effects of Glycyrrhiza glabra and Glycyrrhizic Acid on Leishmania major-infection BALB/C mice. Parasite Immunol. 2022; 44(1-2): e12879. https://doi.org/10.1111/pim.12879.
- Bhattacharjee S., Bhattacharjee A., Majumder S., Majumdar S.B., Majumdar S. Glycyrrhizic acid suppresses Cox-2-mediated anti-inflammatory responses during Leishmania donovani infection. J Antimicrob Chemother. 2012; 67(8): 1905-14. https://doi.org/10.1093/jac/dks159.
- Peng X., Ekanayaka S.A., McClellan S.A., Barrett R.P., Vistisen K., Hazlett L.D. Characterization of Three Ocular Clinical Isolates of P. aeruginosa: Viability, Biofilm Formation, Adherence, Infectivity, and Effects of Glycyrrhizin. Pathogens. 2017; 6(4): 52. https://doi.org/10.3390/pathogens6040052.
- Ekanayaka S.A., McClellan S.A., Barrett R.P., Hazlett L.D. Topical Glycyrrhizin Is Therapeutic for Pseudomonas aeruginosa Keratitis. J Ocul Pharmacol Ther. 2018; 34(3): 239-49. https://doi.org/10.1089/jop.2017.0094.
- Carruthers N.J., McClellan S.A., Somayajulu M., Pitchaikannu A., Bessert D., Peng X., Huitsing K., Stemmer P.M., Hazlett L.D. Effects of Glycyrrhizinon Multi-Drug Resistant Pseudomonas aeruginosa. Pathogens. 2020; 9(9): 766. https://doi.org/10.3390/pathogens9090766.
- Chakotiya A.S., Tanwar A., Narula A., Sharma R.K. Effects of Glycyrrhiza glabra on membrane permeability and inhibition of effluxactivity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity. MicrobPathog. 2016; 98: 98-105. https://doi.org/10.1016/j.micpath.2016.07.001.
- Utsunomiya T., Kobayashi M., Ito M., Pollard R.B., Suzuki F. Glycyrrhizin improves the resistance of MAIDS mice to opportunistic infection of Candida albicans through the modulation of MAIDS-associated type 2 T cell responses. Clin Immunol. 2000; 95(2):145-55. https://doi.org/10.1006/clim.2000.4854.
- Richard S.A. Exploring the Pivotal Immunomodulatory and Anti-Inflammatory Potentials of Glycyrrhizic and Glycyrrhetinic Acids. Mediators Inflamm. 2021; 2021: 6699560. https://doi.org/10.1155/2021/6699560.
- Michaelis M., Geiler J., Naczk P., Sithisarn P., Ogbomo H., Altenbrandt B., Leutz A., Doerr H.W., Cinatl J. Jr. Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Med Microbiol Immunol. 2010; 199(4): 291-7. https://doi.org/10.1007/s00430-010-0155-0.
- Chen X.X., Zhou H.X., Qi W.B., Ning Z.Y., Ma Y.J., Li Y.L., Wang G.C., Chen J.X. [Antiviral effects of the combination of glycyrrhizin and ribavirin against influenza A H1N1 virus infection in vivo]. Yao Xue Xue Bao. 2015; 50(8): 966-72.
- Торшин И.Ю., Громова О.А., Чучалин А.Г., Журавлев Ю.И. Хемореактомный скрининг воздействия фармакологических препаратов на SARS-CoV-2 и виром человека как информационная основа для принятия решений по фармакотерапии COVID-19. Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2021;14(2):191-211. [Torshin I.Yu., Gromova O.A., Chuchalin A.G., Zhuravlev Yu.I. Chemoreactome screening of the effects of pharmacological drugs on SARS-CoV-2 and human viromes as an information basis for making decisions on the pharmacotherapy of COVID-19. Pharmacoeconomics. Modern pharmacoeconomics and pharmacoepidemiology. 2021;14(2):191-211. (in Russian)]. https://doi.org/10.17749/2070-4909/farmakoekonomika.2021.078.
- Zamzami M.A. Molecular docking, molecular dynamics simulation and MM-GBSA studies of the activity of glycyrrhizin relevant substructures on SARS-CoV-2 RNA-dependent-RNA polymerase. J Biomol Struct Dyn. 2022 Jan 17:1-13. https://doi.org/10.1080/07391102.2021.2025147.
- Tolah A.M., Altayeb L.M., Alandijany T.A., Dwivedi V.D., El-Kafrawy S.A., Azhar E.I. Computational and In Vitro Experimental Investigations Reveal Anti-Viral Activity of Licorice and Glycyrrhizin against Severe Acute Respiratory Syndrome Coronavirus 2.Pharmaceuticals (Basel). 2021; 14(12):1216. https://doi.org/10.3390/ph14121216.
- Li J., Xu D., Wang L., Zhang M., Zhang G., Li E., He S. Glycyrrhizic Acid Inhibits SARS-CoV-2 Infection by Blocking Spike Protein-Mediated Cell Attachment. Molecules. 2021; 26(20): 6090. https://doi.org/10.3390/molecules26206090.
- Van de Sand L., Bormann M., Alt M., Schipper L., Heilingloh C.S., Steinmann E., Todt D., Dittmer U., Elsner C., Witzke O., Krawczyk A. Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease. Viruses. 2021; 13(4): 609 https://doi.org/10.3390/v13040609.
- Passali D., Ciprandi G., Damiani V., De Marco A.M., Cianfrone F., Passali F.M. Glycyrrhizin for topical use and prophylaxis of COVID-19: an interesting pharmacological perspective. J Biol Regul Homeost Agents. 2021; 35(1 Suppl.2): 15-9. https://doi.org/10.23812/21-1supp2-4.
- Gomaa A.A., Mohamed H.S., Abd-Ellatief R.B., Gomaa M.A., Hammam D.S. Advancing combination treatment with glycyrrhizin and boswellic acids for hospitalized patients with moderate COVID-19 infection: a randomized clinical trial. Inflammopharmacology. 2022; 30(2): 477-86. https://doi.org/10.1007/s10787-022-00939-7.
- Tian X., Gan W., Nie Y., Ying R., Tan Y., Chen J., Chen M., Zhang C. Clinical efficacy and security of glycyrrhizic acid preparation in the treatment of anti-SARS-CoV-2 drug-induced liver injury: a protocol of systematic review and meta-analysis. BMJ Open. 2021; 11(7): e051484. https://doi.org/10.1136/bmjopen-2021-051484.
- Незнахина М.С., Чувашева М.В., Макарычев И.Л., Шливко И.Л. Опыт применения аммония глицирризината в терапии контагиозного моллюска у детей. Клиническая дерматология и венерология. 2020; 19(5): 749-56. [Neznakhina M.S., Chuvasheva M.V., Makarychev I.L., Shlivko I.L. Experience in the use of ammonium glycyrrhizinate in the treatment of molluscum contagiosum in children. Clinical dermatology and venereology. 2020; 19(5): 749-56. (in Russian)]. https://doi.org/10.17116/klinderma202019051749.
- Huang W., Chen X., Li Q., Li P., Zhao G., Xu M., Xie P. Inhibition of intercellular adhesion in herpex simplex virus infection by glycyrrhizin. Cell Biochem Biophys. 2012; 62(1):137-40. https://doi.org/10.1007/s12013-011-9271-8.
- Aikawa Y., Yoshiike T., Ogawa H. Effectof glycyrrhizin on pain and HLA-DR antigen expression on CD8-positive cells in peripheral blood of herpes zoster patients in comparison with other antiviral agents. Skin Pharmacol. 1990; 3(4): 268-71. https://doi.org/10.1159/000210879.
- Bentz G.L., Lowrey A.J., Horne D.C., Nguyen V., Satterfield A.R., Ross T.D., Harrod A.E., Uchakina O.N., McKallip R.J. Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency. PLoS One. 2019; 14(5):e0217578. https://doi.org/10.1371/journal.pone.0217578.
- Valencia M.H., Pacheco A.C., Quijano T.H., Girón A.V., López C.V. Clinical response to glycyrrhizinic acid in genital infection due to human papillomavirus and low-grade squamous intraepithelial lesion. Clin Pract. 2011; 1(4): e93. https://doi.org/10.4081/cp.2011.e93.
- Kolev N., Bakardzhiev I., Kovachev E., Ivanov S. [GLYCYRRHIZINIC ACID--AN ALTERNATIVE METHOD FOR TREATMENT OF CONDYLOMATA ACUMINATA]. Akush Ginekol (Sofiia). 2015; 54(9):16-8. [Article in Bulgarian].
Received 15.04.2022
Accepted 20.04.2022
About the Authors
Olga A. Gromova, Dr. Med. Sci., Professor, Science Нead of the Institute of Pharmacoinformatics, Leading Researcher at the Department of Intellectual Systems,Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, unesco.gromova@gmail.com, https://orcid.org/0000-0002-7663-710X,
119333, Russia, Moscow, Vavilova str., 42.
Ivan Yu. Torshin, PhD in Applied Mathematics, Institute of Pharmacoinformatics, Senior Researcher at the Department of Intellectual Systems, Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, https://orcid.org/0000-0002-2659-7998, 119333, Russia, Moscow, Vavilova str., 42.
Nana K. Tetruashvili, Dr. Med. Sci., Head of the 2nd Obstetrics Department of Pathology of Pregnancy, V.I. Kulakov NMRC for OG&P,
Ministry of Health of Russia, n_tetruashvili@oparina4.ru, 117997, Russia, Moscow, Ac. Oparina str., 4.
Corresponding author: Olga A. Gromova, unesco.gromova@gmail.com
Authors’ contributions: Gromova O.A., Torshin I.Yu., Tetruashvili N.K. – collecting and processing material, writing and editing the text. All authors have made an equivalent contribution to prepare the paper.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The research was performed under the grant of the Russian Science Foundation (Project No. 20-12-00175). The work was carried out within the framework of the State Program, task No. 0063-2019-0003 “Mathematical methods of data analysis and prognosis” using the infrastructure of the Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences.
For citation: Gromova O.A., Torshin I.Yu., Tetruashvili N.K. A systematic review of experimental and clinical studies on the pharmacology of glycyrrhizin and its derivatives.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2022; 4: 34-46 (in Russian)
https://dx.doi.org/10.18565/aig.2022.4.34-46