The role of extracellular fetal DNA in predicting the great obstetric syndromes

Karapetyan A.O., Baeva M.O., Baev O.R.

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia
Objective. To present an analysis of the data available in the literature on the role of extracellular fetal DNA (fDNA) in predicting the great obstetric syndromes.
Material and methods. Literature sources published in databases, such as Pubmed and Scopus, were sought.
Results. There is evidence indicating that increased maternal blood DNA levels can be used as a predictive marker for pregnancy complications, such as preeclampsia, preterm birth, and fetal growth retardation. The most likely mechanism for increasing maternal blood fDNA is the strengthening of apoptotic, necrotic, and inflammatory processes in the placenta. However, not all studies confirm that there is a relationship between the development of the great obstetric syndromes and higher fDNA concentrations. Conceivably, the contradictions are due to the use of a number of procedures to determine fDNA, which limit sampling by sex and rhesus factor. Also, there is no consensus on the time when its concentration starts to increase; the influence of confounding factors has not been investigated.
Conclusion. Maternal blood extracellular fDNA is a promising marker for predicting the great obstetric syndromes. There is a need for further investigations, by using the procedures that do not limit sampling and by taking into account the factors that influence the maternal blood concentration of extracellular fDNA.


extracellular fetal DNA
fetal growth retardation
preterm birth


1. Sultana Z., Maiti K., Aitken J., Morris J., Dedman L., Smith R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am. J. Reprod. Immunol. 2017; 77(5).

2. Walknowska J., Conte F.A., Grumbach M.M. Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet. 1969; 1(7606): 1119-22.

3. Lo Y.M., Corbetta N., Chamberlain P.F., Rai V., Sargent I.L., Redman C.W., Wainscoat J.S. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997; 350(9076): 485-7.

4. Сухих Г.Т., Трофимов Д.Ю., Барков И.Ю., Донников А.Е., Шубина Е.С., Коростин Д.О., Екимов А.Н., Гольцов А.Ю., Бахарев В.А., Каретникова Н.А., Боровиков П.И., Тетруашвили Н.К., Ким Л.В., Гата А.С., Павлович С.В., Скрябин К.Г., Прохорчук Е.Б., Мазур А.М., Пантюх К.С. Новые подходы к проведению пренатального скрининга хромосомной патологии: ДНК-скрининг по крови матери. Акушерство и гинекология. 2016; 8: 72-8. [Sukhikh G.T., Trofimov D.Yu., Barkov I.Yu., Donnikov A.E., Shubina E.S., Korostin D.O., Ekimov A.N., Goltsov A.Yu., Bakharev V.A., Karetnikova N.A., Borovikov P.I., Tetruashvili N.K., Kim L.V., Gata A.S., Pavlovich S.V., Skryabin K.G., Prokhorchuk E.B., Mazur A.M., Pantyukh K.S. New approaches to prenatal screening for chromosomal abnormalities: Maternal blood DNA screening. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2016; (8): 72-8. (in Russian)]

5. Tjoa M.L., Cindrova-Davies T., Spasic-Boskovic O., Bianchi D.W., Burton G.J. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am. J. Pathol. 2006; 169(2): 400-4.

6. Lo Y.M., Zhang J., Leung T.N., Lau T.K., Chang A.M., Hjelm N.M. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 1999; 64(1): 218-24.

7. Парсаданян Н.Г., Шубина Е.С., Трофимов Д.Ю., Тетруашвили Н.К. Свободная эмбриональная ДНК в прогнозировании исхода беременности при акушерской патологии. Акушерство и гинекология. 2014; 6: 10-3. [Parsadanyan N.G., Shubina E.S., Trofimov D.Yu., Tetruashvili N.K. Free embryonic DNA in the prediction of pregnancy outcome in obstetric pathology. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2014; 6: 10-3. (in Russian)]

8. Грачева М.И., Кан Н.Е., Красный А.М. Роль внеклеточной фетальной ДНК в ранней диагностике осложнений беременности. Акушерство и гинекология. 2016; 10: 5-10. [Gracheva M.I., Kan N.E., Krasniy A.M. Role of cell-free fetal DNA in the early diagnosis of pregnancy complications. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2016; (10): 5-10. (in Russian)]

9. Lo Y.M., Leung T.N., Tein M.S., Sargent I.L., Zhang J., Lau T.K. et al. Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin. Chem. 1999; 45(2): 184-8.

10. Levine R.J., Qian C., Leshane E.S., Yu K.F., England L.J., Schisterman E.F. et al. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am. J. Obstet. Gynecol. 2004; 190(3): 707-13.

11. Poon L.C., Musci T., Song K., Syngelaki A., Nicolaides K.H. Maternal plasma cell-free fetal and maternal DNA at 11-13 weeks’ gestation: Relation to fetal and maternal characteristics and pregnancy outcomes. Fetal Diagn. Ther. 2013; 33(4): 215-23.

12. Stein W., Müller S., Gutensohn K., Emons G., Legler T. Cell-free fetal DNA and adverse outcome in low risk pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013; 166(1): 10-3.

13. Sifakis S., Zaravinos A., Maiz N., Spandidos D.A., Nicolaides K.H. First-trimester maternal plasma cell-free fetal DNA and preeclampsia. Am. J. Obstet. Gynecol. 2009; 201(5): 472. e1-472. e7.

14. Chan K.C.A., Ding C., Gerovassili A., Yeung S.W., Chiu R.W.K., Leung T.N. et al. Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin. Chem. 2006; 52(12): 2211-8.

15. Tsui D.W., Chan K.C., Chim S.S., Chan L.W., Leung T.Y., Lau T.K. et al. Quantitative aberrations of hypermethylated RASSF1A gene sequences in maternal plasma in pre-eclampsia. Prenat. Diagn. 2007; 27(13): 1212-8.

16. Papantoniou N., Bagiokos V., Agiannitopoulos K., Kolialexi A., Destouni A., Tounta G. et al. RASSF1A in maternal plasma as a molecular marker of preeclampsia. Prenat. Diagn. 2013; 33(7): 682-7.

17. Kim M.J., Kim S.Y., Park S.Y., Ahn H.K., Chung J.H., Ryu H.M. Association of fetal-derived hypermethylated RASSF1A concentration in placenta-mediated pregnancy complications. Placenta. 2013; 34(1): 57-61.

18. Salvianti F., Inversetti A., Smid M., Valsecchi L., Candiani M., Pazzagli M. et al. Prospective evaluation of RASSF1A cell-free DNA as a biomarker of pre-eclampsia. Placenta. 2015; 36(9): 996-1001.

19. Gardosi J. Clinical strategies for improving the detection of fetal growth restriction. Clin. Perinatol. 2011; 38(1): 21-31.

20. Leftwich H.K., Stetson B., Sabol B., Leung K., Hibbard J.U., Wilkins I. Growth restriction: identifying fetuses at risk. J. Matern. Fetal Neonatal Med. 2017;Jun. 8.

21. Khalil A., Thilaganathan B. Role of uteroplacental and fetal Doppler in identifying fetal growth restriction at term. Best Pract. Res. Clin. Obstet. Gynaecol. 2017; 38: 38-47.

22. Smid M., Vassallo A., Lagona F., Valsecchi L., Maniscalco L., Danti L. et al. Quantitative analysis of fetal DNA in maternal plasma in pathological conditions associated with placental abnormalities. Ann. N. Y. Acad. Sci. 2001; 945: 132-7.

23. Caramelli E., Rizzo N., Concu M., Simonazzi G., Carinci P., Bondavalli C. et al. Cell-free fetal DNA concentration in plasma of patients with abnormal uterine artery Doppler waveform and intrauterine growth restriction--a pilot study. Prenat. Diagn. 2003; 23(5): 367-71.

24. Smid M., Galbiati S., Lojacono A., Valsecchi L., Platto C., Cavoretto P. et al. Correlation of fetal DNA levels in maternal plasma with Doppler status in pathological pregnancies. Prenat. Diagn. 2006; 26(9): 785-90.

25. Crowley A., Martin C., Fitzpatrick P., Sheils O., O’Herlihy C., O’Leary J.J., Byrne B.M. Free fetal DNA is not increased before 20 weeks in intrauterine growth restriction or pre-eclampsia. Prenat. Diagn. 2007; 27(2): 174-9.

26. Sekizawa A., Jimbo M., Saito H., Iwasaki M., Matsuoka R., Okai T. et al. Cell-free fetal DNA in the plasma of pregnant women with severe fetal growth restriction. Am. J. Obstet. Gynecol. 2003; 188(2): 480-4.

27. Ananth C.V., Friedman A.M., Gyamfi-Bannerman C. Epidemiology of Moderate preterm, late preterm and early term delivery. Clin. Perinatol. 2013;40(4): 601-10.

28. Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Preterm birth 1: Epidemiology and causes of preterm birth. Obstet. Anesth. Dig. 2009; 29(1): 6-7.

29. Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O. et al. The preterm parturition syndrome. BJOG. 2006; 113(Suppl. 3): 17-42.

30. Arias F., Rodriquez L., Rayne S.C., Kraus F.T. Maternal placental vasculopathy and infection: Two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am. J. Obstet. Gynecol. 1993; 168(2): 585-91.

31. Misra V., Hobel C., Sing C. Placental blood flow and the risk of preterm delivery. Placenta. 2009; 30(7): 619-24.

32. Hoesli I., Danek M., Lin D., Li Y., Hahn S., Holzgreve W. Circulating erythroblasts in maternal blood are not elevated before onset of preterm labor. Obstet. Gynecol. 2002; 100(5): 992-6.

33. Farina A., LeShane E.S., Romero R., Gomez R., Chaiworapongsa T., Rizzo N. et al. High levels of fetal cell-free DNA in maternal serum: A risk factor for spontaneous preterm delivery. Am. J. Obstet. Gynecol. 2005; 193(2): 421-5.

34. Jakobsen T.R., Clausen F.B., Rode L., Dziegiel M.H., Tabor A. High levels of fetal DNA are associated with increased risk of spontaneous preterm delivery. Prenat. Diagn. 2012; 32(9): 840-5.

35. Illanes S., Gomez R., Fornes R., Figueroa-Diesel H., Schepeler M., Searovic M. et al. Free fetal DNA levels in patients at risk of preterm labour. Prenat. Diagn. 2011; 31(11): 1082-5.

36. Quezada M.S., Francisco C., Dumitrascu-Biris D., Nicolaides K.H., Poon L.C. Fetal fraction of cell-free DNA in maternal plasma in the prediction of spontaneous preterm delivery. Ultrasound Obstet. Gynecol. 2015; 45(1): 101-5.

37. Dugoff L., Barberio A., Whittaker P.G., Schwartz N., Sehdev H., Bastek J.A. Cell-free DNA fetal fraction and preterm birth. Am. J. Obstet. Gynecol. 2016; 215(2): 231. e1-231. e7.

38. El-Garf W., Sheba M., Salama S., Fouad R., El-Shenawy M., Bibers M., Azmy O. Assessment of plasma cell-free fetal DNA using hypermethylated RASSF1A in maternal plasma in cases of spontaneous preterm labor. Med. Res. J. 2013; 12(2): 49-52.

39. Phimister E.G., Phillippe M. Cell-free fetal DNA - a trigger for parturition. N. Engl. J. Med. 2014; 370(26): 2534-6.

40. Scharfe-Nugent A., Corr S.C., Carpenter S.B., Keogh L., Doyle B., Martin C. et al. TLR9 Provokes Inflammation in Response to Fetal DNA: Mechanism for fetal loss in preterm birth and preeclampsia. J. Immunol. 2012; 188(11): 5706-12.

41. Thaxton J.E., Romero R., Sharma S. TLR9 activation coupled to IL-10 deficiency induces adverse pregnancy outcomes. J. Immunol. 2009; 183(2): 1144-54.

42. Herrera C.A., Stoerker J., Carlquist J., Stoddard G.J., Jackson M., Esplin S. et al. Cell-free DNA, inflammation, and the initiation of spontaneous term labor. Am. J. Obstet. Gynecol. 2017; 217(5): 583. e1-583. e8.

43. Wataganara T., Peter I., Messerlian G.M., Borgatta L., Bianchi D.W. Inverse correlation between maternal weight and second trimester circulating cell-free fetal DNA levels. Obstet. Gynecol. 2004; 104(3): 545-50.

44. Ashoor G., Syngelaki A., Poon L.C.Y., Rezende J.C., Nicolaides K.H. Fetal fraction in maternal plasma cell-free DNA at 11-13 weeks’ gestation: Relation to maternal and fetal characteristics. Ultrasound Obstet. Gynecol. 2013; 41(1): 26-32.

45. Galbiati S., Smid M., Gambini D., Ferrari A., Restagno G., Viora E. et al. Fetal DNA detection in maternal plasma throughout gestation. Hum. Genet. 2005; 117(2-3): 243-8.

46. Парсаданян Н.Г., Шубина Е.С., Тетруашвили Н.К., Трофимов Д.Ю., Сухих Г.Т. Уровень свободной эмбриональной ДНК при угрожающем, привычном выкидыше и неосложненном течении беременности в сроках до 22 недель. Акушерство и гинекология. 2015; 2: 33-8. [Parsadanyan N.G., Shubina E.S., Tetruashvili N.K., Trofimov D.Yu., Sukhikh G.T. Free embryonic DNA levels in threatened recurrent miscarriage and uncomplicated pregnancy at less than 22 weeks’ gestation. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2015; (2): 33-8. (in Russian)]

47. Zhong X.Y., Holzgreve W., Li J.C., Aydinli K., Hahn S. High levels of fetal erythroblasts and fetal extracellular DNA in the peripheral blood of a pregnant woman with idiopathic polyhydramnios: Case report. Prenat. Diagn. 2000; 20(10): 838-41.

48. Samura O., Miharu N., Hyodo M., Honda H., Ohashi Y., Honda N. et al. Cell-free fetal DNA in maternal circulation after amniocentesis. Clin. Chem. 2003; 49(7): 1193-5.

49. Yi P., Yin N., Zheng Y., Jiang H., Yu X., Yan Y. et al. Elevated plasma levels of hypermethylated RASSF1A gene sequences in pregnant women with intrahepatic cholestasis. Cell Biochem. Biophys. 2013; 67(3): 977-81.

Received 08.06.2017

Accepted 23.06.2017

About the Authors

Anna O. Karapetyan, resident of Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79057068481. E-mail:
Baeva Madina Olegovna, resident of the Department of Radiation Diagnostics and Radiation Therapy, I.M. Sechenov First Moscow State Medical University.
119146, Russia, Moscow, Bolshaya Pirogovskaya str. 19c1. E-mail:
Baev Oleg Radomirovich, MD, professor, head of the maternity ward, Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954381188. E-mail:

For citations: Karapetyan A.O., Baeva M.O., Baev O.R. The role of extracellular fetal DNA in predicting the great obstetric syndromes. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2018; (4): 10-5. (in Russian)

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.