Changes in placental growth factor levels in patients with different pregnancy complications
Khodzhaeva Z.S., Muminova K.T., Poluektova A.A., Avdeeva A.M., Tokareva A.O., Kukaev E.N., Baranov I.I., Starodubtseva N.L.
Objective: To study changes in placental growth factor (PlGF) levels at 11–14 weeks of gestation and before delivery (at 37–40 weeks) in relation to various pregnancy complications, including gestational diabetes mellitus, fetal macrosomia, premature birth, and abnormal placentation.
Materials and methods: The study included 3,274 pregnant women who underwent first-trimester screening at V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia. Serum PlGF levels were measured at various gestational ages. The Mann–Whitney U test and χ² Pearson test were used for the analysis, with statistical significance set at p<0.05.
Results: No statistical differences were found in PlGF levels at 11-14 weeks between the groups, in contrast to the PAPP-A levels. However, there were distinct patterns of PlGF level changes associated with various pregnancy complications. Gestational diabetes was characterized by a decline in PlGF levels as pregnancy progressed, with the most pronounced reduction observed in patients receiving insulin therapy (p<0.001). In contrast, elevated PlGF levels were detected in the third trimester in cases of fetal macrosomia (p=0,004). In cases of abnormal placentation (particularly placenta previa), a significant increase in PlGF level was detected prior to delivery (p=0,01). In cases of preterm birth, the changes in PlGF levels did not reach statistical significance.
Conclusion: The findings of the study highlight the potential usefulness of evaluating PAPP-A and PlGF levels across various stages of pregnancy to assist in risk stratification for complicated pregnancies. Lower PAPP-A levels during the first trimester are linked to an increased risk of gestational diabetes mellitus (GDM) and preterm birth, while PlGF levels in the third trimester area are associated with the severity of metabolic and placental complications.
Authors' contributions: Khodjaeva Z.S., Baranov I.I. – conception and design of the study, analysis of study results, drafting of the manuscript; Muminova K.T., Poluektova A.A., Avdeeva A.M. – clinical examination of pregnant women, collection of material, systematization and analysis of the obtained data, drafting of the manuscript; Tokareva A.O., Kukaev E.N., Starodubtseva N.L. – conception and design of the study, organization and conduct of laboratory studies, systematization and analysis of the obtained data, drafting of the manuscript.
Conflicts of interest: The authors have no conflicts of interest to declare.
Funding: The study was supported by a grant from the Russian Science Foundation (No. 24-14-00140): https://rscf.ru/project/24-14-00140/
Ethical Approval: The study was reviewed and approved by the Research Ethics Committee of the V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia.
Patient Consent for Publication: All patients provided informed consent for the publication of their data.
Authors' Data Sharing Statement: The data supporting the findings of this study are available upon request from the corresponding author after approval from the principal investigator.
For citation: Khodzhaeva Z.S., Muminova K.T., Poluektova A.A., Avdeeva A.M., Tokareva A.O., Kukaev E.N., Baranov I.I., Starodubtseva N.L Changes in placental growth factor levels in patients
with different pregnancy complications.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (5): 86-96 (in Russian)
https://dx.doi.org/10.18565/aig.2025.95
Keywords
References
- Hayes Ryan D., McCarthy F.P., O’Donoghue K., Kenny L.C. Placental growth factor: A review of literature and future applications. Pregnancy Hypertens. 2018; 14: 260-4. https://dx.doi.org/10.1016/j.preghy.2018.03.003
- Yang W., Jiang Y., Wang Y., Zhang T., Liu Q., Wang C. et al. Placental growth factor in beta cells plays an essential role in gestational beta-cell growth. BMJ Open Diabetes Res. Care. 2020; 8(1): e000921. https://dx.doi.org/10.1136/bmjdrc-2019-000921
- Tao J., Xia L.Z., Chen J.J., Zeng J.F., Meng J., Wu S.Y. et al. High glucose condition inhibits trophoblast proliferation, migration and invasion by downregulating placental growth factor expression. J. Obstet. Gynaecol. Res. 2020; 46(9): 1690-701. https://dx.doi.org/10.1111/jog.14341
- Loegl J., Nussbaumer E., Cvitic S., Huppertz B., Desoye G., Hiden U. GDM alters paracrine regulation of feto-placental angiogenesis via the trophoblast. Lab. Investig. 2017; 97(4): 409-18. https://dx.doi.org/10.1038/labinvest.2016.149
- Tao J., Rao Y., Wang J., Tan S., Zhao J., Cao Z. et al. Placental growth factor alleviates hyperglycemia-induced trophoblast pyroptosis by regulating mitophagy. J. Obstet. Gynaecol. Res. 2024; 50(10): 1813-29. https://dx.doi.org/10.1111/jog.16050
- Tenenbaum-Gavish K., Sharabi-Nov A., Binyamin D., Møller H.J., Danon D., Rothman L. et al. First trimester biomarkers for prediction of gestational diabetes mellitus. Placenta. 2020; 101: 80-9. https://dx.doi.org/10.1016/j.placenta.2020.08.020
- Yanachkova V., Staynova R., Naseva E., Kamenov Z. The role of placental growth factor in the prediction of carbohydrate and thyroid disorders during pregnancy. Medicina (Kaunas). 2022; 58(2): 232. https://dx.doi.org/10.3390/medicina58020232
- Lu Y.T., Chen C.P., Sun F.J., Chen Y.Y., Wang L.K., Chen C.Y. Associations between first-trimester screening biomarkers and maternal characteristics with gestational diabetes mellitus in Chinese women. Front. Endocrinol. (Lausanne). 2024; 15: 1383706. https://dx.doi.org/10.3389/fendo.2024.1383706
- Gorkem U., Togrul C., Arslan E. Relationship between elevated serum level of placental growth factor and status of gestational diabetes mellitus. J. Matern. Fetal Neonatal Med. 2020; 33(24): 4159-63. https://dx.doi.org/10.1080/14767058.2019.1598361
- Alqudah A., Eastwood K.A., Jerotic D., Todd N., Hoch D., McNally R. et al. FKBPL and SIRT-1 are downregulated by diabetes in pregnancy impacting on angiogenesis and endothelial function. Front. Endocrinol. (Lausanne). 2021; 12: 650328. https://dx.doi.org/10.3389/fendo.2021.650328
- Chatzakis C., Papavasiliou D., Mansukhani T., Nicolaides K.H., Charakida M. Maternal vascular-placental axis in the third trimester in women with gestational diabetes mellitus, hypertensive disorders, and unaffected pregnancies. Am. J. Obstet. Gynecol. 2025; 232(5): 489.e1-489.e11. https://dx.doi.org/10.1016/j.ajog.2024.08.045
- James-Todd T., Cohen A., Wenger J., Brown F. Time-specific placental growth factor (PlGF) across pregnancy and infant birth weight in women with preexisting diabetes. Hypertens. Pregnancy. 2016; 35(3): 436-46. https://dx.doi.org/10.3109/10641955.2016.1172085
- Wang F., Zhang L., Zhang F., Wang J., Wang Y., Man D. First trimester serum PIGF is associated with placenta accreta. Placenta. 2020; 101: 39-44. https://dx.doi.org/10.1016/j.placenta.2020.08.023
- Zhang T., Wang S. Potential serum biomarkers in prenatal diagnosis of placenta accreta spectrum. Front. Med. (Lausanne). 2022; 9: 860186. https://dx.doi.org/10.3389/fmed.2022.860186
- Zhang F., Gu M., Chen P., Wan S., Zhou Q., Lu Y. et al. Distinguishing placenta accreta from placenta previa via maternal plasma levels of sFlt-1 and PLGF and the sFlt-1/PLGF ratio. Placenta. 2022; 124: 48-54. https://dx.doi.org/10.1016/j.placenta.2022.05.009
- Jauniaux E., Ayres-de-Campos D., Langhoff-Roos J., Fox K.A., Collins S.; FIGO Placenta Accreta Diagnosis and Management Expert Consensus Panel. FIGO classification for the clinical diagnosis of placenta accreta spectrum disorders. Int. J. Gynaecol. Obstet. 2019; 146(1): 20-4. https://dx.doi.org/10.1002/ijgo.12761
- Arakaza A., Liu X., Zhu J., Zou L. Assessment of serum levels and placental bed tissue expression of IGF-1, bFGF, and PLGF in patients with placenta previa complicated with placenta accreta spectrum disorders. J. Matern. Fetal Neonatal Med. 2024; 37(1): 2305264. https://dx.doi.org/10.1080/14767058.2024.2305264
- Gao W., Yang L., Shi B. Mapping themes trends and knowledge structure of trophoblastic invasion, a bibliometric analysis from 2012-2021. J. Reprod. Immunol. 2021; 146: 103347. https://dx.doi.org/10.1016/j.jri.2021.103347
- Gladstone R.A., Ahmed S., Huszti E., McLaughlin K., Snelgrove J.W., Taher J. et al. Midpregnancy placental growth factor screening and early preterm birth. JAMA Netw. Open. 2024; 7(11): e2444454. https://dx.doi.org/10.1001/jamanetworkopen.2024.44454
- Conover C.A., Bale L.K., Overgaard M.T., Johnstone E.W., Laursen U.H., Füchtbauer E.M. et al. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development. Development. 2004; 131(5): 1187-94. https://dx.doi.org/10.1242/dev.00997
- McLaughlin K., Snelgrove J.W., Audette M.C., Syed A., Hobson S.R., Windrim R.C. et al. PlGF (Placental Growth Factor) testing in clinical practice: evidence from a Canadian Tertiary Maternity Referral Center. Hypertension. 2021; 77(6): 2057-65. https://dx.doi.org/10.1161/HYPERTENSIONAHA.121.17047
- Sherrell H., Dunn L., Clifton V., Kumar S. Systematic review of maternal Placental Growth Factor levels in late pregnancy as a predictor of adverse intrapartum and perinatal outcomes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018; 225: 26-34. https://dx.doi.org/10.1016/j.ejogrb.2018.03.059
- Bowe S., Mitlid-Mork B., Staff A.C., Sugulle M. PlGF and sFlt-1, reduced fetal movements and adverse delivery outcome of a likely placental cause: A real world prospective observational study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2025; 307: 34-42. https://dx.doi.org/10.1016/j.ejogrb.2025.01.029
- Monari F., Menichini D., Spano’ Bascio L., Grandi G., Banchelli F., Neri I. et al. A first trimester prediction model for large for gestational age infants: a preliminary study. BMC Pregnancy Childbirth. 2021; 21(1): 654. https://dx.doi.org/10.1186/s12884-021-04127-3
- Chiu C.P.H., Feng Q., Chaemsaithong P., Sahota D.S., Lau Y.Y., Yeung Y.K. et al. Prediction of spontaneous preterm birth and preterm prelabor rupture of membranes using maternal factors, obstetric history and biomarkers of placental function at 11-13 weeks. Ultrasound Obstet. Gynecol. 2022; 60(2): 192-9. https://dx.doi.org/10.1002/uog.24917
- Li Y., Meng Y., Chi Y., Li P., He J. Meta-analysis for the relationship between circulating pregnancy-associated plasma protein A and placenta accreta spectrum. Medicine (Baltimore). 2023; 102(47): e34473. https://dx.doi.org/10.1097/MD.0000000000034473
- Mortaki A., Douligeris A., Panagiotopoulos M., Daskalaki M.A., Pergialiotis V., Antsaklis P. et al. First- and second-trimester aneuploidy screening biomarkers and risk assessment of placenta previa and accreta: a systematic review and meta-analysis. J. Obstet. Gynaecol. Can. 2024; 46(11): 102663. https://dx.doi.org/10.1016/j.jogc.2024.102663
- Kapustin R.V., Kopteeva E.V., Alekseenkova E.N., Tral T.G., Tolibova G.K., Arzhanova O.N. Placental expression of endoglin, placental growth factor, leptin, and hypoxia-inducible factor-1 in diabetic pregnancy and pre-eclampsia. Gynecol. Endocrinol. 2021; 37(sup1): 35-9. https://dx.doi.org/10.1080/09513590.2021.2006513
- Cui J., Li P., Chen X., Li L., Ouyang L., Meng Z. et al. Study on the relationship and predictive value of first-trimester pregnancy-associated plasma protein-A, maternal factors, and biochemical parameters in gestational diabetes mellitus: a large case-control study in Southern China mothers. Diabetes Metab. Syndr. Obes. 2023; 16: 947-57. https://dx.doi.org/10.2147/DMSO.S398530
- Ramezani S., Doulabi M.A., Saqhafi H., Alipoor M. Prediction of gestational diabetes by measuring the levels of pregnancy associated plasma protein-A (PAPP-A) during gestation weeks 11-14. J. Reprod. Infertil. 2020; 21(2): 130-7.
- Kantomaa T., Vääräsmäki M., Gissler M., Sairanen M., Nevalainen J. First trimester low maternal serum pregnancy associated plasma protein-A (PAPP-A) as a screening method for adverse pregnancy outcomes. J. Perinat. Med. 2023; 51(4): 500-9. https://dx.doi.org/10.1515/jpm-2022-0241
Received 07.04.2025
Accepted 05.05.2025
About the Authors
Zulfia S. Khodzhaeva, Dr. Med. Sci., Professor, Deputy Director for Research of the Institute of Obstetrics, Academician V.I. Kulakov National Medical Research Centerfor Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Oparina str., 4, +7(916)407-75-67, zkhodjaeva@mail.ru,
https://orcid.org/0000-0001-8159-3714
Kamilla T. Muminova, PhD, Junior Researcher at the 1st Department of Pregnancy Pathology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Oparina str., 4, +7(916)373-77-07, kamika91@mail.ru,
https://orcid.org/0000-0003-2708-4366
Alina A. Poluektova, PhD student, Specialist, Laboratory of Clinical Proteomics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Oparina str., 4, +7(977)636-30-90, a_poluektova@oparina4.ru, https://orcid.org/0009-0003-7892-7017
Anna M. Avdeeva, Student, Faculty of Fundamental Medicine, Moscow Scientific and Educational Institute, Lomonosov Moscow State University, 119991, Russia, Moscow, Leninskie Gory, 1, +7(916)900-06-50, a_avdeeva@oparina4.ru, https://orcid.org/0009-0000-2225-2469
Alisa O. Tokareva, Specialist, Laboratory of Clinical Proteomics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Oparina str., 4, +7(965)128-68-86, a_tokareva@oparina4.ru, https://orcid.org/0000-0001-5918-9045
Evgeny N. Kukaev, PhD in Physics and Mathematics, Senior Researcher at the Laboratory of Clinical Proteomics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Oparina str., 4; Researcher, V.L. Talrose Institute for Energy Problems
of Chemical Physics, +7(916)883-17-85, e_kukaev@oparina4.ru, https://orcid.org/0000-0002-8397-3574
Igor Ivanovich Baranov, Dr. Med. Sci., Professor, Head of the Department of Scientific and Educational Programs, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Oparina str., 4; Vice-President of the Russian Society
of Obstetricians and Gynecologists, i_baranov@oparina4.ru, https://orcid.org/0000-0002-9813-2823
Natalia L. Starodubtseva, PhD (Bio), Head of the Laboratory of Clinical Proteomics, Academician V.I. Kulakov National Medical Research Center for Obstetrics,
Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Oparina str., 4, +7(916)463-98-67, n_starodubtseva@oparina4.ru,
https://orcid.org/0000-0001-6650-5915
Corresponding author: Zulfia S. Khodzhaeva, zkhodjaeva@mail.ru