The role of proliferative, pro-, and anti-inflammatory endothelial factors in the regulation of oocyte maturation in the treatment of infertility

Perfilova V.N., Muzyko E.A., Kustova M.V., Tikhaeva K.Yu.

1) Volgograd State Medical University, Ministry of Health of the Russian Federation, Volgograd, Russia; 2) Volgograd Medical Research Center, Volgograd, Russia; 3) Genome-Volga, Volgograd, Russia
The problem of infertility affects millions of reproductive-aged people worldwide, and the situation is only getting worse. Modern treatment methods involve the use of assisted reproductive technologies (ART); however, the frequency of pregnancy based on the transfer of two embryos is approximately 40%.
This may be due to the unsatisfactory quality and quantity of the oocytes obtained. Since endothelial factors are involved in maintaining the homeostasis of the female reproductive system, their excessive or insufficient number leads to the disruption of adaptation mechanisms in polycystic ovary syndrome (PCOS), ovarian hyperstimulation (OHSS), endometriosis, etc.
The review shows the role of proliferative, pro-, and anti-inflammatory endothelial factors in the maturation of oocytes in the treatment of infertility caused by different reproductive system diseases: PCOS, OHSS, endometriosis, etc.
Conclusion: Impaired homeostasis due to endothelial dysfunction and to changes in the number and/or activity of proliferative, pro-, and anti-inflammatory endothelial factors is associated with reproductive system diseases: PCOS, OHSS, endometriosis, recurrent implantation failures. Induced ovulation stimulation in the treatment of infertility by ART methods can also promote endothelial dysfunction due to a high hormonal load. This may be associated with the low efficiency of therapy.
Therefore, determining the role of proliferative, pro-, and anti-inflammatory endothelial factors is relevant for practitioners in order to increase the success and personification of the treatment of female infertility by ART methods.

Authors' contributions: Perfilova V.N., Muzyko E.A., Kustova M.V., Tikhaeva K.Yu. – analysis of the literature and writing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The investigation has been supported by the Russian Science Foundation within the framework of Project
No. 23-25-00067 “The role of the endothelium in the regulation of oocyte maturation in the treatment of infertility with assisted reproductive technology methods”.
For citation: Perfilova V.N., Muzyko E.A., Kustova M.V., Tikhaeva K.Yu.
The role of proliferative, pro-, and anti-inflammatory endothelial factors
in the regulation of oocyte maturation in the treatment of infertility.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (8): 5-12 (in Russian)


oocyte maturation
infertility treatment
assisted reproductive technologies


  1. Савина А.А., Землянова Е.В., Фейгинова С.И. Потери потенциальных рождений в г. Москве за счет женского и мужского бесплодия. Здоровье мегаполиса. 2022; 3(3): 39-45. [Savina A.A., Zemlyanova E.V.,Feiginova S.I. Potential births loss due to ity male and female infertility in Moscow. City Healthcare. 2022; 3(3): 39-45. (in Russian)].;39-45.
  2. Коваленко Я.А., Чуприненко Л.М. Структурно-функциональная характеристика эндометрия у пациенток при проведении вспомогательных репродуктивных технологий. Сеченовский вестник. 2019; 10(1): 29-34. [Kovalenko Ya.A., Chuprinenko L.M. Structural and tructural and functional features of endometrium in patients undergoing in – vitro fertilization. Sechenov Medical Journal. 2019; 10(1): 29-34. (in Russian)].
  3. Волкова Л.В., Аляутдина О.С. Клинико-диагностическое значение сосудистоэндотелиального фактора роста при неудачных попытках ЭКО. Акушерство и гинекология. 2011; 4: 126-9. [ Volkova L.V., Alyautdina O.S. The clinical and diagnostic value of vascular endo-thelial growth factor on IVF attemps. Obstetrics and Gynecology. 2011; (4): 126-9. (in Russian)].
  4. Paulino L.R.F.M., Cunha E.V., Silva A.W.B., Souza G.B., Lopes E.P.F., Donato M.A.M. et al. Effects of tumour necrosis factor-alpha and interleukin-1 on in vitro development of bovine secondary follicles. Reprod. Domest. Anim. 2018; 53(4): 997-1005.
  5. Silva A.W.B., Ribeiro R.P., Menezes V.G., Barberino R.S., Passos J.R.S., Dau A.M.P. et al. Expression of TNF-α system members in bovine ovarian follicles and the effects of TNF-α or dexamethasone on preantral follicle survival, development and ultrastructure in vitro. Anim. Reprod. Sci. 2017; 182: 56-68.
  6. Chaubey G.K., Kumar S., Kumar M., Sarwalia P., Kumaresan A., De S. et al. Induced cumulus expansion of poor quality buffalo cumulus oocyte complexes by Interleukin-1beta improves their developmental ability. J. Cell. Biochem. 2018; 119(7): 5750-60.
  7. Martoriati A., Lalmanach A.-C., Goudet G., Gérard N. Expression of interleukin-1 (IL-1) system genes in equine cumulus-oocyte complexes and influence of IL-1β during in vitro maturation. Biol. Reprod. 2002; 67(2): 630-6.
  8. Birt J.A., Nabli H., Stilley J.A., Windham E.A., Frazier S.R., Sharpe-Timms K.L. Elevated peritoneal fluid TNF-α incites ovarian early growth response factor 1 expression and downstream protease mediators: a correlation with ovulatory dysfunction in endometriosis. Reprod. Sci. 2013; 20(5): 514-23.
  9. Yuan S., Wen J., Cheng J., Shen W., Zhou S., Yan W. et al. Age-associated up-regulation of EGR1 promotes granulosa cell apoptosis during follicle atresia in mice through the NF-κB pathway. Cell Cycle. 2016; 15(21): 2895-905.
  10. Fonseca B.M., Pinto B., Costa L., Felgueira E., Rebelo I. Increased expression of NLRP3 inflammasome components in granulosa cells and follicular fluid interleukin(IL)-1beta and IL-18 levels in fresh IVF/ICSI cycles in women with endometriosis. J. Assist. Reprod. Genet. 2023; 40(1): 191-9.
  11. Lin X., Tong X., Zhang Y., Gu W., Huang Q., Zhang Y. et al. Decreased expression of EZH2 in granulosa cells contributes to endometriosis-associated infertility by targeting IL-1R2. Endocrinology. 2022; 164(2): bqac210.
  12. Zhai Y., Pang Y. Systemic and ovarian inflammation in women with polycystic ovary syndrome. J. Reprod. Immunol. 2022; 151: 103628.
  13. Motamedzadeh L., Mohammadi M.M., Hadinedoushan H., FarashahiYazd E., Fesahat F. Association of IL-17 and IL-23 follicular fluid concentrations and gene expression profile in cumulus cells from infertile women at risk for ovarian hyperstimulation syndrome. Hum. Fertil. (Camb). 2020; 23(4): 289-95.
  14. Shi S.L., Peng Z.F., Yao G.D., Jin H.X., Song W.Y., Yang H.Y. et al. Expression of CD11c+ HLA-DR+ dendritic cells and related cytokines in the follicular fluid might be related to pathogenesis of ovarian hyperstimulation syndrome. Int. J. Clin. Exp. Pathol. 2015; 8(11): 15133-7.
  15. Chistyakova G.N., Remizova I.I., Gazieva I.A., Qhermyaninova O.V. Immunological and hemostasiological disorders in women with ovarian hyperstimulation syndrome. Gynecol. Endocrinol. 2014; 30(Suppl. 1): 39-42.
  16. Alhilali M.J., Parham A., Attaranzadeh A., Amirian M., Azizzadeh M. Prognostic role of follicular fluid tumor necrosis factor alpha in the risk of early ovarian hyperstimulation syndrome. BMC Pregnancy Childbirth. 2020; 20(1): 691.
  17. Lamaita R.M., Pontes A., Belo A.V., Caetano J.P.J., Andrade S.P., Cãndido E.B. et al. Inflammatory response patterns in ICSI patients. Reprod. Sci. 2012; 19(7): 704-11.
  18. Korhonen K.V., Savolainen-Peltonen H.M., Mikkola T.S., Tiitinen A.E., Unkila-Kallio L.S. C-reactive protein response is higher in early than in late ovarian hyperstimulation syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016; 207: 162-8.
  19. Herzberger E.H., Miller N., Ghetler Y., Yaniv R.T., Keren K.A., Shulman A. et al. High C-reactive protein levels in women undergoing IVF are associated with low quality embryos. Fertil. Steril. 2016; 106: e262.
  20. Sylus A.M., Nandeesha H., Chitra T. Matrix metalloproteinase-9 increases and Interleukin-10 reduces with increase in body mass index in polycystic ovary syndrome: A cross-sectional study. Int. J. Reprod. Biomed. 2020; 18(8): 605-10.
  21. Borini A., Maccolini A., Tallarini A., Bonu M.A., Sciajno R.,Flamigni C. Perifollicular vascularity and its relationship with oocyte maturity and IVF outcome. Ann. N.Y. Acad. Sci. 2001; 943: 64-7.
  22. Guo X., Yi H., Li T.C., Wang Y., Wang H., Chen X. Role of vascular endothelial growth factor (VEGF) in human embryo implantation: clinical implications. Biomolecules. 2021; 11(2): 253.
  23. Trau H.A., Brännström M., Curry T.E. Jr, Duffy D.M. Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum. Reprod. 2016; 31(2): 436-44.
  24. Bansal R., Ford B., Bhaskaran S., Thum M., Bansal A. Elevated levels of serum vascular endothelial growth factor-A are not related to NK cell parameters in recurrent IVF failure. J. Reprod. Infertil. 2017; 18: 280-7.
  25. Chen X., Man G.C.W., Liu Y., Wu F., Huang J., Li T. C. et al. Physiological and pathological angiogenesis in endometrium at the time of embryo implantation. Am. J. Reprod. Immunol. 2017; 78(2).
  26. Zhang L., Xiong W., Xiong Y., Liu H., Liu Y. 17 β-Estradiol promotes vascular endothelial growth factor expression via the Wnt/β-catenin pathway during the pathogenesis of endometriosis. Mol. Hum. Reprod. 2016; 22: 526-35.
  27. Lupicka M., Zadroga A., Szczepańska A., Korzekwa A.J. Effect of ovarian steroids on vascular endothelial growth factor a expression in bovine uterine endothelial cells during adenomyosis. BMC Vet. Res. 2019; 15: 473.
  28. Almawi W.Y., Gammoh E., Malalla Z.H., Al-Madhi S.A. Analysis of VEGFA variants and changes in VEGF levels underscores the contribution of VEGF to polycystic ovary syndrome. PLoS One. 2016; 11(11): e0165636.
  29. Huang L., Wang L. Association between VEGF gene polymorphisms (11 sites) and polycystic ovary syndrome risk. Biosci. Rep. 2020; 40(3): BSR20191691.
  30. Oron G., Fisch B., Zhang X.Y., Gabbay-Benziv R., Kessler-Icekson G., Krissi H. et al. Fibroblast growth factor 10 in human ovaries. Reprod. Biomed. Online. 2012; 25(4): 396-401.
  31. Kanke T., Fujii W., Naito K., Sugiura K. Effect of fibroblast growth factor signaling on cumulus expansion in mice in vitro. Mol. Reprod. Dev. 2022; 89(7): 281-9.
  32. Sak M.E., Gul T., Evsen M.S., Soydinc H.E., Sak S., Ozler A. et al. Fibroblast growth factor-1 expression in the endometrium of patients with repeated implantation failure after in vitro fertilization. Eur. Rev. Med. Pharmacol. Sci. 2013; 17(3): 398-402.
  33. Xu N., Qin Y., Reindollar R.H., Tho S.P., McDonough P.G., Layman L.C. A mutation in the fibroblast growth factor receptor 1 gene causes fully penetrant normosmic isolated hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 2007; 92(3): 1155-8.
  34. Hammadeh M.E., Fischer-Hammadeh C., Hoffmeister H., Huebner U., Georg T., Rosenbaum P. et al. Fibroblast growth factor (FGF), intracellular adhesion molecule (sICAM-1) level in serum and follicular fluid of infertile women with polycystic ovarian syndrome, endometriosis and tubal damage, and their effect on ICSI outcome. Am. J. Reprod. Immunol. 2003; 50(2): 124-30.
  35. Artini P.G., Monti M., Matteucci C., Valentino V., Cristello F., Genazzani A.R. Vascular endothelial growth factor and basic fibroblast growth factor in polycystic ovary syndrome during controlled ovarian hyperstimulation. Gynecol. Endocrinol. 2006; 22(8): 465-70.
  36. Yu X., Wang Y., Tan X., Li M. Upregulation of fibroblast growth factor 2 contributes to endometriosis through SPRYs/DUSP6/ERK signaling pathway. Acta Histochem. 2021; 123(5): 151749.
  37. Santorelli S., Fischer D.P., Harte M.K., Laru J., Marshall K.M. In vivo effects of AZD4547, a novel fibroblast growth factor receptor inhibitor, in a mouse model of endometriosis. Pharmacol. Res. Perspect. 2021; 9(2): e00759.
  38. Filant J., DeMayo F.J., Pru J.K., Lydon J.P., Spencer T.E. Fibroblast growth factor receptor two (FGFR2) regulates uterine epithelial integrity and fertility in mice. Biol. Reprod. 2014; 90(1): 7.
  39. Li Q. Transforming growth factor β signaling in uterine development and function. J. Anim. Sci. Biotechnol. 2014; 5(1): 52.
  40. Tal R., Seifer D.B., Shohat-Tal A., Grazi R.V., Malter H.E. Transforming growth factor-β1 and its receptor soluble endoglin are altered in polycystic ovary syndrome during controlled ovarian stimulation. Fertil. Steril. 2013; 100(2): 538-43.
  41. Alvandian F., Hosseini E., Hashemian Z., Khosravifar M., Movaghar B., Shahhosein M. et al. TGFß gene members and their regulatory factors in granulosa compared to cumulus cells in PCOS: a case-control study. Cell J. 2022; 24(7): 410-6.
  42. Fang L., Li Y., Wang S., Li Y., Chang H.M., Yi Y. et al. TGF-β1 induces VEGF expression in human granulosa-lutein cells: a potential mechanism for the pathogenesis of ovarian hyperstimulation syndrome. Exp. Mol. Med. 2020; 52(3): 450-60.
  43. Young V.J., Ahmad S.F., Duncan W.C., Horne A.W. The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum. Reprod. Update. 2017; 23(5): 548-59.

Received 24.05.2023

Accepted 15.06.2023

About the Authors

Valentina N. Perfilova, Dr. Sci. (Bio), Professor, Professor at the Department of Pharmacology and Pharmacy of ICMPE, Volgograd State Medical University, Ministry of Health of the Russian Federation, +7(905)3945451,, 400131, Russia, Volgograd, Pavshih Borcov sqr., 1,
Elena A. Muzyko, PhD, Assistant Professor at the Department of Pathophysiology, Clinical Pathophysiology, Volgograd State Medical University, Ministry of Health of the Russian Federation, +7(927)5302241,, 400131, Russia, Volgograd, Pavshih Borcov sqr., 1,
Margarita V. Kustova, Assistant at the Department of Theoretical Biochemistry with a Course of Clinical Biochemistry, Volgograd State Medical University, Ministry of Health of the Russian Federation, +7(904)4007615,, 400131, Russia, Volgograd, Pavshih Borcov sq., 1,
Ksenia Yu. Tikhaeva, PhD, obstetrician-gynecologist, specialist in human reproduction of "Genom-Volga", +7(905)3328466,, 400078, Russia, Volgograd, Lenina Ave., 102A,
Corresponding author: Elena A. Muzyko,

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.