The role of lipidomic studies in human reproduction and in the outcomes of infertility treatment programs using assisted reproductive technologies

Fortygina Yu.A., Makarova N.P., Nepsha O.S., Lobanova N.N., Kalinina E.A.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
Lipids and lipophilic trace elements are of increasing interest as potential non-invasive predictive molecules for in vitro fertilization outcomes. Their antioxidant and/or pro-inflammatory activities have an impact on female and male reproductive functions. Since the causes of fertility disorders may be related to metabolic imbalance, metabolomics can be applied to reproductive medicine to identify and quantify low-molecular-weight metabolites in follicular fluid and in the germ cells of couples undergoing assisted reproductive technologies. Studying the effect of lipids on the outcomes of assisted reproductive technologies in order to correct lipid metabolism disorders will help to improve live birth rates. Data from the Russian and foreign articles found in PubMed (http://pubmed.ncbi.nim.nih.gov) and published over the past 5 years were systematically analyzed. The paper presents data from studies investigating the lipidome of follicular fluid, spermatozoa and seminal plasma, blood plasma from couples and the possible prospects for studies in assisted reproductive technology programs.
Conclusion: Despite the extent of current investigations, the question of the combined mutual influence of the lipid profile of female and male gametes and blood of patients on the parameters of oogenesis, spermatogenesis, and embryogenesis, and, accordingly, on the outcomes of assisted reproductive technology programs, remains open. Further investigations are needed to study lipidome in order to predict the outcomes of treatment with assisted reproductive technologies and to develop possible interventions to correct the lipidome composition.

Keywords

lipidomic analysis
follicular fluid
seminal plasma
spermatozoa
assisted reproductive technologies
infertility

References

  1. Batushansky A., Zacharia A., Shehadeh A., Bruck-Haimson R., Saidemberg D., Kogan N.M. et al. A shift in glycerolipid metabolism defines the follicular fluid of ivf patients with unexplained infertility. Biomolecules. 2020; 10(8): 1135. https://dx.doi.org/10.3390/biom10081135.
  2. Shehadeh A., Bruck-Haimson R., Saidemberg D., Zacharia A., Herzberg S., Ben-Meir A., Moussaieff A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome. FASEB J. 2019; 33(9): 10291-9. https://dx.doi.org/10.1096/fj.201900318RR.
  3. Johnson A.A., Stolzing A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell. 2019; ;18(6): e13048.https://dx.doi.org/10.1111/acel.13048.
  4. Züllig T., Trötzmüller M., Köfeler H.C. Lipidomics from sample preparation to data analysis: a primer. Anal. Bioanal. Chem. 2020; 412(10): 2191-209.https://dx.doi.org/10.1007/s00216-019-02241-y.
  5. Revelli A., Delle Piane L., Casano S., Molinari E., Massobrio M., Rinaudo P.Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod. Biol. Endocrinol. 2009; 7(4): 40.https://dx.doi.org/10.1186/1477-7827-7-40.
  6. Zhang X., , Wang T., Song J., Deng J., Sun Z. Study on follicular fluid metabolomics components at different ages based on lipid metabolism. Reprod. Biol. Endocrinol. 2020; 18(1): 42. https://dx.doi.org/10.1186/s12958-020-00599-8.
  7. Uzbekova S., Bertevello P.S., Dalbies-Tran R., Elis S., Labas V., Monget P., Teixeira-Gomes A.P. Metabolic exchanges between the oocyte and its environment: focus on lipids. Reprod. Fertil. Dev. 2022; 34(2): 1-26.https://dx.doi.org/10.1071/RD21249.
  8. Babayev E., Duncan F.E. Age-associated changes in cumulus cells and follicular fluid: the local oocyte microenvironment as a determinant of gamete quality. Biol. Reprod. 2022; 106(2): 351-65. https://dx.doi.org/10.1093/biolre/ioab241.
  9. Zarezadeh R., Mehdizadeh A., Leroy J.L.M.R., Nouri M., Fayezi S., Darabi M. Action mechanisms of n-3 polyunsaturated fatty acids on the oocyte maturation and developmental competence: Potential advantages and disadvantages. J. Cell. Physiol. 2019; 234(2): 1016-29. https://dx.doi.org/10.1002/jcp.27101.
  10. Бурдули А.Г., Кициловская Н.А., Сухова Ю.В., Ведихина И.А., Иванец Т.Ю., Чаговец В.В., Стародубцева Н.Л., Франкевич В.Е. Фолликулярная жидкость и исходы программвспомогательных репродуктивных технологий (обзор литературы). Гинекология. 2019; 21(6): 36-40. [Burduli A.G., Kitsilovskaya N.A., Sukhova Yu.V., Vedikhina I.A. et al. Follicular fluid and assisted reproductive technology programs outcomes (literature review). Gynecology. 2019; 21(6): 36-40. (in Russian)]
  11. Ruiz-Sanz J.I., Pérez-Ruiz I., Meijide S., Ferrando M., Larreategui Z.,Ruiz-Larrea M.B. Lower follicular n-3 polyunsaturated fatty acid levels are associated with a better response to ovarian stimulation. J. Assist. Reprod. Genet. 2019; 36(3): 473-82. https://dx.doi.org/10.1007/ s10815-018-1384-1.
  12. Cordeiro F.B., Montani D.A., Pilau E.J., Gozzo F.C., Fraietta R., Turco E.G.L. Ovarian environment aging: follicular fluid lipidomic and related metabolic pathways. J. Assist. Reprod. Genet. 2018; 35(8): 1385-93. https://dx.doi.org/10.1007/s10815-018-1259-5.
  13. Mirabi P., Chaichi M.J., Esmaeilzadeh S., Jorsaraei S.G.A., Bijani A., Ehsani M.Does different BMI influence oocyte and embryo quality by inducing fatty acid in follicular fluid? Taiwan. J. Obstet. Gynecol. 2017; 56(2): 159-64.https://dx.doi.org/10.1016/j.tjog.2016.11.005.
  14. Montani D.A., Braga D.P.A.F., Borges E. Jr, Camargo M., Cordeiro F.B., Pilau E.J. et al. Understanding mechanisms of oocyte development by follicular fluid lipidomics. J. Assist. Reprod. Genet. 2019; 36(5): 1003-11.https://dx.doi.org/10.1007/s10815-019-01428-7.
  15. Luti S., Fiaschi T., Magherini F., Modesti P.A., Piomboni P., Governini L. et al. Relationship between the metabolic and lipid profile in follicular fluid of women undergoing in vitro fertilization. Mol. Reprod. Dev. 2020; 87(9): 986-97.https://dx.doi.org/10.1002/mrd.23415.
  16. Liu Y., Tilleman K., Vlaeminck B., Gervais R., Chouinard P.Y., De Sutter P., Fievez V. The fatty acid composition in follicles is related to the developmental potential of oocytes up to the blastocyst stage: a single-centre cohort study. Reprod. Biol. Endocrinol. 2022; 20(1): 107. https://dx.doi.org/10.1186/s12958-022-00974-7.
  17. Ruebel M.L., Piccolo B.D., Mercer K.E., Pack L., Moutos D., Shankar K., Andres A. Obesity leads to distinct metabolomic signatures in follicular fluid of women undergoing in vitro fertilization. Am. J. Physiol. Endocrinol. Metab. 2019; 316(3): E383-96. https://dx.doi.org/10.1152/ajpendo.00401.2018.
  18. Bou Nemer L., Shi H., Carr B.R., Word R.A., Bukulmez O. Effect of bodyweight on metabolic hormones and fatty acid metabolism in follicular fluidof women undergoing in vitro fertilization: A pilot study. Reprod. Sci. 2019; 26(3): 404-11. https://dx.doi.org/10.1177/1933719118776787.
  19. Núñez Calonge R., Guijarro J.A., Andrés C., Cortés S., Saladino M., Caballero P.,Kireev R. Relationships between lipids levels in blood plasma, follicular fluid and seminal plasma with ovarian response and sperm concentration regardless of age and body mass index. Rev. Int. Androl. 2022; 20(3): 178-88.https://dx.doi.org/10.1016/j.androl.2021.02.004.
  20. Song J., Xiang S., Pang C., Guo J., Sun Z. Metabolomic alternations of follicular fluid of obese women undergoing in-vitro fertilization treatment. Sci. Rep. 2020; 10(1): :5968. https://dx.doi.org/10.1038/s41598-020-62975-z.
  21. Khan R., Jiang X., Hameed U., Shi Q. Role of Lipid metabolism and signaling in mammalian oocyte maturation, quality, and acquisition of competence. Front. Cell Dev. Biol. 2021; 9: 639704. https://dx.doi.org/10.3389/fcell.2021.639704.
  22. da Costa L. do V.T., Cordeiro F.B., Rochetti R., M. Murgu M., D. Zylbersztejn D., Cedenho A. et al. Follicular fluid lipidomics reveals lipid alterations by LH addition during IVF cycles. Metabolomics. 2017; 13(6): 70.
  23. Wang S., Wang J., Jiang Y., Jiang W. Association between blood lipid level and embryo quality during in vitro fertilization. Medicine (Baltimore). 2020;99(13): e19665. https://dx.doi.org/10.1097/MD.0000000000019665.
  24. Cai W.Y., Luo X., Chen E., Lv H., Fu K., Wu X.K., Xu J. Serum lipid levels and treatment outcomes in women undergoing assisted reproduction: a retrospective cohort study. Front. Endocrinol. (Lausanne). 2021; 12: 633766.https://dx.doi.org/10.3389/fendo.2021.633766.
  25. Wang J., Zheng W., Zhang S., Yan K., Jin M., Hu H. et al. An increase of phosphatidylcholines in follicular fluid implies attenuation of embryo quality on day 3 post-fertilization. BMC Biol. 2021; 19(1): 200.https://dx.doi.org/10.1186/s12915-021-01118-w.
  26. Rivera-Egea R., Garrido N., Sota N., Meseguer M., Remohí J., Dominguez F. Sperm lipidic profiles differ significantly between ejaculates resulting in pregnancy or not following intracytoplasmic sperm injection. J. Assist. Reprod. Genet. 2018; 35(11): 1973-85. https://dx.doi.org/10.1007/s10815-018-1284-4.
  27. Chen S., Wang M., Li L., Wang J., Ma X., Zhang H. et al. High-coveragetargeted lipidomics revealed dramatic lipid compositional changes in asthenozoospermic spermatozoa and inverse correlation of gangliosideGM3 with sperm motility. Reprod. Biol. Endocrinol. 2021; 19(1): 105.https://dx.doi.org/10.1186/ s12958-021-00792-3.
  28. Mirabi P., Chaichi M.J., Esmaeilzadeh S., Ali Jorsaraei S.G., Bijani A., Ehsani M., Hashemi Karooee S.F. The role of fatty acids on ICSI outcomes: a prospective cohort study. Lipids Health Dis. 2017; 16(1): 18. https://dx.doi.org/10.1186/s12944-016-0396-z.
  29. Гусякова О.А., Мурский С.И., Тукманов Г.В., Комарова М.В. Особенности метаболического состава спермальной плазмы при различных морфофункциональных патологиях эякулята. Клиническая лабораторная диагностика. 2019; 64(8): 469-76. [Gusyakova O.A., Murskiy S.I., Tukmanov G.V., Komarova M.V. Features of the metabolic composition of spermal plasma in different morphofunctional pathologies of the ejaculate. Russian Clinical Laboratory Diagnostics. 2019; 64(8): 469-76. (in Russian)].https://dx.doi.org 10.18821/0869-2084-2019-64-8-469-476.
  30. Crisóstomo L., Videira R.A., Jarak I., Starčević K., Mašek T., Rato L. et al. Diet during early life defines testicular lipid content and sperm quality in adulthood. Am. J. Physiol. Metab. 2020; 319(6): E1061-73. https://dx.doi.org/10.1152/ajpendo.00235.2020.
  31. Iizuka-Hishikawa Y., Hishikawa D., Sasaki J., Takubo K., Goto M., Nagata K.et al. Lysophosphatidic acid acyltransferase 3 tunes the membrane status of germ cells by incorporating docosahexaenoic acid during spermatogenesis. J. Biol. Chem. 2017; 292(29): 12065-76. https://dx.doi.org/10.1074/jbc.M117.791277.
  32. Evans H.C., Dinh T.T.N., Hardcastle M.L., Gilmore A.A., Ugur M.R., Hitit M. et al. Advancing semen evaluation using lipidomics. Front. Vet. Sci. 2021; 8: 601794. https://dx.doi.org/10.3389/fvets.2021.601794.
  33. Furse S., Watkins A.J., Williams H.E.L., Snowden S.G., Chiarugi D.,Koulman A. Paternal nutritional programming of lipid metabolism is propagated through sperm and seminal plasma. Metabolomics. 2022; 18(2): 13.https://dx.doi.org/10.1007/s11306-022-01869-9.
  34. Eid N., Morgan H.L., Watkins A.J. Paternal periconception metabolic health and offspring programming. Proc. Nutr. Soc. 2022; 81(2): 119-25.https://dx.doi.org/10.1017/S0029665121003736.
  35. Crisóstomo L., Videira R.A., Jarak I., Starčević K., Mašek T., Rato L. et al. Inherited metabolic memory of high-fat diet impairs testicular fatty acid content and sperm parameters. Mol. Nutr. Food Res. 2022; 66(5): e2100680.https://dx.doi.org/10.1002/mnfr.202100680.
  36. Calonge R.N., Kireev R., Guijarro A., Cortes S., Carolina Andres C., Pedro Caballero P. Lipid dysregulation in seminal and follicular fluids could be related with male and female infertility. Endocrinol. Metab. Int. J. 2018; 6(1): 65-71.
  37. Shan S., Xu F., Hirschfeld M., Brenig B. Sperm lipid markers of male fertility in mammals. Int. J. Mol. Sci. 2021; 22(16): 8767. https://dx.doi.org/10.3390/ijms22168767.
  38. Collodel G., Castellini C., Lee J.C., Signorini C. Relevance of fatty acids to sperm maturation and quality. Oxid. Med. Cell. Longev. 2020; 5(5): 7038124.https://dx.doi.org/10.1155/2020/7038124.
  39. Lu J.C., Jing J., Yao Q., Fan K., Wang G.H., Feng R.X. et al. Relationship between lipids levels of serum and seminal plasma and semen parameters in 631 Chinese subfertile men. PLoS One. 2016; 11(1): ) e0146304.https://dx.doi.org/10.1371/journal.pone.0146304.
  40. Liu Y., Cheng H., Tiersch T.R. The role of alkalinization-induced Ca2+ influx in sperm motility activation of a viviparous fish Redtail Splitfin (Xenotoca eiseni). Biol. Reprod. 2018; 99(6): 1159-70. https://dx.doi.org/10.1093/biolre/ioy150.

Received 10.06.2022

Accepted 31.08.2022

About the Authors

Iuliia A. Fortygina, postgraduate student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology,
Ministry of Health of the Russian Federation, yu_fortygina@oparina4.ru, https://orcid.org/0000-0002-1251-0505, 117997, Russia, Moscow, Ac. Oparin str., 4.
Natalya P. Makarova, Dr. Bio. Sci., Leading Researcher, Department of IVF named after Prof. B.V. Leonov, Academician V.I. Kulakov National Medical Research Center
for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, np_makarova@oparina4.ru, https://orcid.org/0000-0003-8922-2878,
117997, Russia, Moscow, Ac. Oparin str., 4.
Oksana S. Nepsha, PhD (Bio), Researcher, Department of IVF named after Prof. B.V. Leonov, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, o_nepsha@oparina4.ru, https://orcid.org/0000-0002-9988-2810,
117997, Russia, Moscow, Ac. Oparin str., 4.
Nataliya N. Lobanova, Researcher, Department of IVF named after Prof. B.V. Leonov, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, n_lobanova@oparina4.ru, https://orcid.org/0000-0002-0818-4073, 117997, Russia, Moscow, Ac. Oparin str., 4.
Elena A. Kalinina, Dr. Med. Sci., Professor, Head of the IVF department named after Prof. B.V. Leonov, Academician V.I. Kulakov National Medical Research Center
for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, e_kalinina@oparina4.ru, https://orcid.org/0000-0002-8922-2878,
117997, Russia, Moscow, Ac. Oparin str., 4.
Corresponding author: Iuliia A. Fortygina, yu_fortygina@oparina4.ru

Authors' contributions: Fortygina Yu.A., Makarova N.P., Nepsha O.S., Lobanova N.N., Kalinina E.A. – development of the design of the investigation, obtaining data for analysis, reviewing publications on the topic of the article, analysis of the findings, writing the text of the manuscript.
Conflicts of interest: The authors declare that there are no possible conflicts of interests.
Funding: The investigation has not been sponsored.
For citation: Fortygina Yu.A., Makarova N.P., Nepsha O.S., Lobanova N.N., Kalinina E.A. The role of lipidomic studies in human reproduction and in the outcomes
of infertility treatment programs using assisted reproductive technologies.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2022; 10: 14-20 (in Russian)
https://dx.doi.org/10.18565/aig.2022.10.14-20

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.