Expanded genetic testing of a pregnant woman with a congenital heart defect in her fetus
Pak V.S., Tetruashvili N.K., Bokerija E.L., Shubina Je., Zaretskaya N.V., Bolshakova A.S., Maslennikov D.N., Kochetkova T.O., Lyushnina D.G., Trofimov D.Yu.
Relevance: The prevalence of fetal heart defects varies by latitude, ranging from 4 to 50 cases per 1,000 live births. Annually, approximately 283.1 thousand children are born in the Russian Federation with congenital developmental anomalies, and approximately 30% of this population is affected by congenital heart defects (Rosstat data for 2023). In the context of antenatal fetal mortality in the Russian Federation, congenital developmental anomalies rank second, with fetal heart defects being the most common, accounting for 1.2% of stillbirths, and 16.7% of all fetal developmental anomalies.
At the V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, an algorithm for the antenatal examination of pregnant women with fetal heart defects has been developed. This algorithm includes invasive prenatal diagnostics, expanded genetic testing, and genetic counseling for couples.
Objective: To describe the results of examinations of pregnant women with fetal heart defects according to an algorithm developed and implemented by V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia.
Materials and methods: A pregnant woman with a fetal heart defect (coarctation of the aorta and atrial septal defect) underwent invasive antenatal diagnostics and expanded genetic testing. In the first stage, molecular karyotyping was performed using chromosomal microarray analysis of amniotic fluid, followed by sequencing of fetal and parental exomes.
Results: Extensive genetic analysis identified a potentially pathogenic variant within the NR2F2 gene in a fetus with a heart defect. This gene variant is associated with a spectrum of cardiac developmental defects, placental pathology, fetal growth restriction, and sexual developmental disorders. Subsequent Sanger family analysis confirmed that the identified NR2F2 gene variant in the fetus was de novo and not inherited from the parents, indicating a low risk of recurrence in future offspring.
Conclusion: Advanced ultrasound and genetic diagnostic modalities enable the accurate determination of the type of defect, genetic etiology (chromosomal or monogenic), and inheritance pattern during the antenatal period. Additionally, expanded prenatal counseling provides families with comprehensive information about the potential risks, complications, prognosis for disability, and survival of children with heart defects.
Authors’ contributions: Pak V.S., Tetruashvili N.K., Bokerija E.L., Trofimov D.Yu. – conception and design of the study; Pak V.S., Zaretskaya N.V., Bolshakova A.S., Lyushnina D.G., Maslennikov D.N., Kochetkova T.O. – data collection and processing; Pak V.S., Tetruashvili N.K. – drafting of the manuscript; Tetruashvili N.K., Bokerija E.L., Shubina Je., Bolshakova A.S., Trofimov D.Yu. – editing of the manuscript.
Conflicts of interest: The authors have no conflicts of interest to declare.
Funding: The state order under the topic: "Development of a test system for prenatal diagnostics of fetal cardiopathology".
Ethical Approval: The study was reviewed and approved by the Research Ethics Committee of the V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia.
Patient Consent for Publication: The couple signed a voluntary informed consent for the publication of their data.
Authors' Data Sharing Statement: The data supporting the findings of this study are available upon request from the corresponding author after approval from the principal investigator.
For citation: Pak V.S., Tetruashvili N.K., Bokerija E.L., Shubina Je., Zaretskaya N.V., Bolshakova A.S., Maslennikov D.N., Kochetkova T.O., Lyushnina D.G., Trofimov D.Yu.
Expanded genetic testing of a pregnant woman with a congenital heart defect in her fetus.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (11): 83-89 (in Russian)
https://dx.doi.org/10.18565/aig.2024.189
Keywords
References
- Zhang L., Yang Z., Yin Y., Huang W., Yi T., Ping J. et al. Using big data to analyze the vaccination status of children with congenital heart disease in Yinzhou District, China. Hum. Vaccin. Immunother. 2024; 20(1): 2319967. https://dx.doi.org/10.1080/21645515.2024.2319967.
- Скворцов В.В., Тумаренко А.В., Байманкулов С.С. Врожденные пороки сердца. Медицинская сестра. 2017; 7 A comprehensive clinical genetics approach to critical congenital heart disease in infancy.: 14-7. [Skvortsov V.V., Tumarenko A.V., Baimankulov S.S. Congenital heart diseases. Meditsinskaya sestra. 2017; (7): 14-7. (in Russian)].
- Linhuan H., Danlei C., Zhiming H., Shu K., Jiayi C., Jiayi P. et al. The use of high-resolution SNP arrays to detect congenital cardiac defects. J. Matern. Fetal Neonatal Med. 2024; 37(1): 2301831. https://dx.doi.org/10.1080/14767058.2024.2301831.
- Федеральная служба государственной статистики (Росстат). Здравоохранение в России. Статистический сборник. М.; 2023. 179c. [Federal State Statistics Service (Rosstat). Healthcare in Russia. Statistical compilation. Moscow; 2023. 179p. (in Russian)].
- Богачевская С.А., Капитоненко Н.А., Богачевский А.Н. Эпидемиологическая характеристика врожденных пороков сердца в России и Дальневосточном федеральном округе за последние 10 лет. Дальневосточный медицинский журнал. 2016; 1: 96-101. [Bogatchevskaia S.A., Kapitonenko N.A., Bogatchevskiy A.N. The epidemiological features of congenital heart diseases in the Russian Federation and the Far Eastern Federal district for the last 10 years. Far Eastern Medical Journal. 2016; (1): 96-101. (in Russian)].
- Щеголев А.И., Туманова У.Н., Шувалова М.П., Фролова О.Г. Сравнительный анализ мертворождаемости в Российской Федерации в 2010 и 2012 г. Российский вестник перинатологии и педиатрии. 2015; 60(3): 58-62. [Shchegolev A.I., Tumanova U.N., Shuvalova M.P., Frolova O.G. Comparative analysis of stillbirth rates in the Russian Federation in 2010 and 2012. Russian Bulletin of Perinatology and Pediatrics. 2015; 60(3): 58-62. (in Russian)].
- van Velzen C.L., Türkeri F., Pajkrt E., Clur S.A., Rijlaarsdam M.E.B., Bax C.J. et al. Pregnancy complications in singleton pregnancies with isolated fetal heart defects. Acta Obstet. Gynecol. Scand. 2016; 95(11): 1273-80. https://dx.doi.org/10.1111/aogs.12955.
- Divanovic A., Bowers K., Michelfelder E., Jaekle R., Newman T., Marcotte M. et al. Intrauterine fetal demise after prenatal diagnosis of congenital heart disease: assessment of risk. Prenat. Diagn. 2016; 36(2): 142-7. https://dx.doi.org/10.1002/pd.4755.
- Пак В.С., Тетруашвили Н.К., Бокерия Е.Л., Шубина Е., Зарецкая Н.В., Большакова А.С., Люшнина Д.Г., Кузнецова М.В., Михайловская Г.В., Саделов И.О., Трофимов Д.Ю. Роль хромосомных аномалий при врожденных пороках сердца плода. Акушерство и гинекология. 2023; 10: 86-93. [Pak V.S., Tetruashvili N.K., Bokeriya E.L., Shubina Je., Zaretskaya N.V., Bolshakova A.S., Lyushnina D.G., Kuznetsova M.V., Mikhailovskaya G.V., Sadelov I.O., Trofimov D.Yu. The role of chromosomal abnormalities in fetal congenital heart defects. Obstetrics and Gynecology. 2023; (10): 86-93. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.220.
- Al Turki S., Manickaraj A.K., Mercer C.L., Gerety S.S., Hitz M.-P., Lindsay S. et al. Rare variants in NR2F2 cause congenital heart defects in humans. Am. J. Hum. Genet. 2014; 94(4): 574-85. https://dx.doi.org/10.1016/j.ajhg.2014.03.007.
- van der Bom T., Zomer A.C., Zwinderman A.H., Meijboom F.J., Bouma B.J.,Mulder B.J.M. The changing epidemiology of congenital heart disease. Nat. Rev. Cardiol. 2011; 8(1): 50-60. https://dx.doi.org/10.1038/nrcardio.2010.166.
- Sun R., Liu M., Lu L., Zheng Y., Zhang P. Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell. Biochem. Biophys. 2015; 72(3): 857-60. https://dx.doi.org/10.1007/s12013-015-0551-6.
- Geddes G.C., Przybylowski L.F., Ware S.M. Variants of significance: medical genetics and surgical outcomes in congenital heart disease. Curr. Opin. Pediatr. 2020; 32(6): 730-8. https://dx.doi.org/10.1097/MOP.0000000000000949.
- De Backer J., Bondue A., Budts W., Evangelista A., Gallego P., Jondeau G. et al. Genetic counselling and testing in adults with congenital heart disease: A consensus document of the ESC Working Group of Grown-Up Congenital Heart Disease, the ESC Working Group on Aorta and Peripheral Vascular Disease and the European Society of Human Genetics. Eur. J. Prev. Cardiol. 2020; 27(13): 1423-35. https://dx.doi.opg/10.1177/2047487319854552.
- Shikany A.R., Landis B.J., Parrott A., Miller E.M., Coyan A., Walters L. et al. A comprehensive clinical genetics approach to critical congenital heart disease in infancy. J. Pediatr. 2020; 227: 231-8.e14. https://dx.doi.org/10.1016/j.jpeds.2020.07.065.
- Planchais J., Boutant M., Fauveau V., Qing L.D., Sabra-Makke L., Bossard P. et al. The role of chicken ovalbumin upstream promoter transcription factor II in the regulation of hepatic fatty acid oxidation and gluconeogenesis in newborn mice. Am. J. Physiol. Endocrinol. Metab. 2015; 308(10): E868-78. https://dx.doi.org/10.1152/ajpendo.00433.2014.
- Dougherty E.J., Chen L.-Y., Awad K.S., Ferreyra G.A., Demirkale C.Y., Keshavarz A. et al. Inflammation and DKK1-induced AKT activation contribute to endothelial dysfunction following NR2F2 loss. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023; 324(6): L783-98. https://dx.doi.org/10.1152/ajplung.00171.2022.
- Xiaodi L., Ming Y., Hongfei X., Yanjie Z., Ruoyi G., Ma X. et al. DNA methylation at CpG island shore and RXRα regulate NR2F2 in heart tissues of tetralogy of Fallot patients. Biochem. Biophys. Res. Commun. 2020; 529(4): 1209-15. https://dx.doi.org/10.1016/j.bbrc.2020.06.110.
- Ganapathi M., Matsuoka L.S., March M., Li D., Brokamp E., Benito-Sanz S. et al. Heterozygous rare variants in NR2F2 cause a recognizable multiple congenital anomaly syndrome with developmental delays. Eur. J. Hum. Genet. 2023; 31(10): 1117-24. https://dx.doi.org/10.1038/s41431-023-01434-5.
- Bashamboo A., Eozenou C., Jorgensen A., Bignon-Topalovic J., Siffroi J.P., Hyon C. et al. Loss of function of the nuclear receptor NR2F2, encoding COUP-TF2, causes testis development and cardiac defects in 46, XX children. Am. J. Hum. Genet. 2018; 102(3): 487-93. https://dx.doi.org/10.1016/j.ajhg.2018.01.021.
- Mahadevan A., Tipler A., Jones H. Shared developmental pathways of the placenta and fetal heart. Placenta. 2023; 141: 35-42. https://dx.doi.org/10.1016/j.placenta.2022.12.006.
- Leon R.L., Sharma K., Mir I.N., Herrera C.L., Brown S.L., Spong C.Y. et al. Placental vascular malperfusion lesions in fetal congenital heart disease. Am. J. Obstet. Gynecol. 2022; 227(4): 620.e1-620.e8. https://dx.doi.org/10.1016/j.ajog.2022.05.038.
- O’Hare C.B., Mangin-Heimos K.S., Gu H., Edmunds M., Bebbington M., Lee C.K. et al. Placental delayed villous maturation is associated with fetal congenital heart disease. Am. J. Obstet. Gynecol. 2023; 228(2): 231.e1-231.e11. https://dx.doi.org/10.1016/j.ajog.2022.08.013.
- Petit F.G., Jamin S.P., Kurihara I., Behringer R.R., DeMayo F.J., Tsai M.J. et al. Deletion of the orphan nuclear receptor COUP-TFII in uterus leads to placental deficiency. Proc. Natl. Acad. Sci. U. S. A. 2007; 104(15): 6293-8. https://dx.doi.org/10.1073/pnas.0702039104.
Received 01.08.2024
Accepted 10.10.2024
About the Authors
Viktoriia S. Pak, PhD student, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 4 Acad. Oparin str., Moscow, Russia, 117997, +7(913)897-28-49,v_pak@oparina4.ru, https://orcid.org/0009-0002-1444-9071
Nana K. Tetruashvili, PhD, Head of the Obstetric Department of Pregnancy Pathology No. 2, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia,
4 Acad. Oparin str., Moscow, Russia, +7(495)438-14-77, n_tetruashvili@oparina4.ru, https://orcid.org/0000-0002-9201-2281
Ekaterina L. Bokerija, PhD, Researcher at the Department of Pathology for Newborn and Prematurely-Born Children No. 2, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 4 Acad. Oparin str., Moscow, Russia, 117997, +7(495)438-27-05, e_bokeriya@oparina4.ru, https://orcid.org/0000-0002-8898-9612
Jekaterina Shubina, PhD in Biology, Head of the Laboratory of Genomic Data Analysis, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 4 Acad. Oparin str., Moscow, Russia, 117997, +7(495)531-44-44, e_shubina@oparina4.ru, https://orcid.org/0000-0003-4383-7428
Nadezhda V. Zaretskaya, PhD, Head of the Laboratory of Clinical Genetics of the Institute of Reproductive Genetics, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 4 Acad. Oparin str., Moscow, Russia, 117997, +7(495)438-24-11, n_zaretskaya@oparina4.ru, https://orcid.org/0000-0001-6754-3833
Anna S. Bolshakova, MD, Geneticist, Department of Clinical Genetics of the Institute of Reproductive Genetics, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia,
4 Acad. Oparin str., Moscow, Russia, 117997, +7(495)438-24-11, a_bolshakova@oparina4.ru, https://orcid.org/0000-0002-7508-0899
Daria G. Lyushnina, PhD student, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 4 Acad. Oparin str., Moscow, Russia, 117997, +7(906)308-60-78,
d_lyushnina@oparina4.ru, https://orcid.org/0009-0004-3160-8737
Dmitry N. Maslennikov, MD, Geneticist at the Laboratory of Genomic Data Analysis of the Institute of Reproductive Genetics, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 4 Acad. Oparin str., Moscow, Russia, 117997, d_maslennikov@oparina4.ru, https://orcid.org/0000-0001-5916-0672
Taisiya O. Kochetkova, Biologist at the Laboratory of Molecular and Genetic Methods of the Institute of Reproductive Genetics, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 4 Acad. Oparin str., Moscow, Russia, 117997, t_kochetkova@oparina4.ru, https://orcid.org/0000-0003-0215-3636
Dmitry Yu. Trofimov, Dr. Bio. Sci, Professor of the RAS, Corresponding Member of the RAS, Director of the Institute of Reproductive Genetics, V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia, 4 Acad. Oparin str., Moscow, Russia, 117997, +7(495)438-49-51, d_trofimov @oparina4.ru, https://orcid.org/0000-0002-1569-8486