Metabolites of the normal vaginal microflora increase the activity of antibiotics
Objective. Investigation of the influence of metabolites from the lactobacilli isolated from healthy women and LCR35 probiotic strain on sensitivity to antibiotics.Sgibnev A.V., Kremleva E.A.
Subject and methods. We studied the effects of H2O2, lactate, and surfactants obtained from 24 vaginal Lactobacillus spp. and metabolites from LCR35 on sensitivity to antibiotics of 172 strains of opportunistic bacteria.
Results. H2O2 and surfactants but no lactic acid were more effective for increasing the sensitivity of bacteria to antibiotics. Strain LCR35 increased sensitivity to antibiotics of all test strains, to a greater extent – G. vaginalis, E. coli and Klebsiella spp.
Conclusion. The phenomenon of potentiation of activity of antibiotic by metabolites from vaginal lactobacilli and LCR35 probiotic strain was detected. For effective treatment of inflammatory diseases by antibiotics should take into account the status of the normal microflora, and if necessary, compensate deficit by probiotic strains able to produce “assistants antibiotics”.
Keywords
Supplementary Materials
- Figure 1. Effect of metabolites from lactobacilli on susceptibility S. aureus to antibiotics (A) ...
- Figure 1. Effect of metabolites from lactobacilli on susceptibility CNS to antibiotics (B) ...
- Figure 1. Effect of metabolites from lactobacilli on susceptibility Streptococcus spp. s to antibiotics (C) ...
- Figure 2. Effect of metabolites from lactobacilli on susceptibility E.coli to antibiotics (A) ...
- Figure 2. Effect of metabolites from lactobacilli on susceptibility Klebsiella spp to antibiotics (B) ...
- Figure 2. Effect of metabolites from lactobacilli on susceptibility G. vaginalis to antibiotics (C) ...
References
1. Women and health: today’s evidence, tomorrow’s agenda. Geneva: World Health Organization; 2009. Available at: http://apps.who.int/iris/bitstream/10665/44168/1/9789241563857_eng.pd
2. Kurchakova T.A., Veresova A.A., Tyutyunnik V.L., Kan N.E. Current approaches to treating papillomavirus infection. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2015; (6): 129-35. (in Russian)
3. Levy S.B., Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 2004; 10(12, Suppl.): S122-9.
4. Bancroft E.A. Antimicrobial resistance: it’s not just for hospitals. JAMA. 2007; 298(15):1803-4.
5. Roca I., Akova M., Baquero F., Carlet J., Cavaleri M., Coenen S. et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect. 2015; 6: 22-9.
6. Worthington R.J., Melander C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013; 31(3):177-84.
7. Viens A.M., Littmann J. Is Antimicrobial resistance a slowly emerging disaster? Public Health Ethics. 2015; 8(3): 255-65.
8. Mandal S.M., Roy A., Ghosh A.K., Hazra T.K., Basak A., Franco O.L. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front. Pharmacol. 2014; 5: 105.
9. Mishra R.K., Segal E., Lipovsky A., Natan M., Banin E., Gedanken A. New life for an old antibiotic. ACS Appl. Mater. Interfaces. 2015; 7(13): 7324-33.
10. Macklaim J.M., Clemente J.C., Knight R., Gloor G.B., Reid G. Changes in vaginal microbiota following antimicrobial and probiotic therapy. Microb. Ecol. Health Dis. 2015; 26: 27799.
11. Bodean O., Munteanu O., Cirstoiu C., Secara D., Cirstoiu M. Probiotics - a helpful additional therapy for bacterial vaginosis. J. Med. Life. 2013; 6(4): 434-6.
12. Sgibnev A., Kremleva E. Vaginal protection by H2O2-producing lactobacilli. Jundishapur J. Microbiol. 2015; 8(10): e22913.
13. Aldunate M., Srbinovski D., Hearps A.C., Latham C.F., Ramsland P.A., Gugasyan R. et al. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis. Front. Physiol. 2015; 6: 164.
14. O’Hanlon D.E., Moench T.R., Cone R.A. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota. PloS One. 2013; 8(11): e80074.
15. Sambanthamoorthy K., Feng X., Patel R., Patel S., Paranavitana C. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiology. 2014; 14: 197.
16. Shokouhfard M., Kermanshahi R.K., Shahandashti R.V., Feizabadi M.M., Teimourian S. The inhibitory effect of a Lactobacillus acidophilus derived biosurfactant on biofilm producer Serratia marcescens. Iran. J. Basic Med. Sci. 2015; 18(10): 1001-7.
17. Whitman W.B., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M.E., Ludwig W. Bergey’s manual of systematic bacteriology. 2nd ed. vol. 5(Pt A and B). New York: Springer-Verlag; 2012.
18. Willumsen P.A., Karlson U. Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation. 1997; 7(5): 415-23.
19. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically : approved standard. 10th ed. CLSI document M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
20. Savicheva A.M., Rybina E.V. In vitro study of the growth, reproduction, antibiotic resistance, and competitive relationships of a Lactobacillus casei rhamnosus strain. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2014; (7): 79-83. (in Russian)
21. Borges S., Silva J., Teixeira P. The role of lactobacilli and probiotics in maintaining vaginal health. Arch. Gynecol. Obstet. 2014; 289(3): 479-89.
22. Dover S.E., Aroutcheva A.A., Faro S., Chikindas M.L. Natural antimicrobials and their role in vaginal health: a short review. Int. J. Probiotics Prebiotics. 2008; 3(4): 219-30.
23. Albesa I., Becerra M.C., Battán P.C., Páez P.L. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem. Biophys. Res. Commun. 2004; 317(2): 605-9.
24. Dwyer D.J., Belenky P.A., Yang J.H., MacDonald I.C., Martell J.D., Takahashi N. et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA. 2014; 111(20): E2100-9.
25. Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007; 130(5): 797-810.
26. Grant S.S., Hung D.T. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013; 4(4): 273-83.
27. Bernier S.P., Létoffé S., Delepierre M., Ghigo J.M. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 2011; 81(3): 705-16.
Received 07.02.2017
Accepted 17.02.2017
About the Authors
Sgibnev Andrey, doctor of biology, associate professor, leading researcher, Laboratory for the study of the mechanisms of formation microbiocenoses of humans; Instituteof Cellular and Intracellular Symbiosis, Ural Branch of RAS. 460000, Russia, Orenburg, Pionerskaja str. 11. Tel.: +73532770512. E-mail: andrej-sgibnev@yandex.ru
Kremleva Elena, MD, leading researcher, Laboratory for the study of the mechanisms of formation microbiocenoses of humans; Institute of Cellular and Intracellular Symbiosis, Ural Branch of RAS; Associate Professor, Department of Obstetrics and Gynecology „Orenburg State Medical University,”
Ministry of Healthcare of the Russian Federation. 460000, Russia, Orenburg, Pionerskaja str. 11. Tel.: +73532770512, +79198621236. E-mail: kremlena1@mail.ru
For citations: Sgibnev A.V., Kremleva E.A. Metabolites of the normal vaginal microflora
increase the activity of antibiotics. Akusherstvo i Ginekologiya/
Obstetrics and Gynecology. 2017; (3): 108-14. (in Russian)
http://dx.doi.org/10.18565/aig.2017.3.108-14