Evaluation of the in vitro effectiveness of the Depantol components on biofilms produced by vaginal microorganisms

Shalepo K.V., Spasibova E.V., Budilovskaya O.V., Krysanova A.A., Khusnutdinova T.A., Cheberya A.S., Cheberya A.R., Savicheva A.M.

1) D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction, St. Petersburg, Russia; 2) St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, St. Petersburg, Russia; 3) S.M. Kirov Military Medical Academy, St. Petersburg, Russia

Objective: To evaluate the in vitro effectiveness of the Depantol components on biofilms produced by vaginal microorganisms. 
Materials and methods: The study examined 33 clinical isolates of pure cultures of microorganisms obtained from the vaginal biotope. The bacterial films were produced by the following microorganisms: G. vaginalis (2 isolates), E. coli (3 isolates), K. pneumoniae (3 isolates), K. piersonii (1 isolate), C. freundii (3 isolates), A. baumannii (3 isolates), S. agalactiae (3 isolates), E. faecalis (3 isolates), S. aureus (3 isolates), and yeast-like fungi of Candida (9 isolates).
Dense and liquid selective nutrient media were used for the study. Microorganisms were identified using MALDI-TOF mass spectrometry (Bruker Microflex). The ability of microorganisms to produce biofilms was assessed according to a modified protocol of Christensen et al. (1985).
The in vitro effectiveness of the Depantol components on biofilms was evaluated using different dilutions of the drug components (chlorhexidine bigluconate, dexpanthenol, macrogols).
Results: The biofilms of varying density were formed by all 33 clinical isolates. Dexpanthenol in tested concentrations and macrogol had no effect on biofilms. Chlorhexidine bigluconate 1% solution destroyed biofilms produced by most vaginal bacteria. These are primarily G. vaginalis (both isolates tested), all E. coli, the clinical isolate of K. piersonii, all E. faecalis, S. aureus and all isolates of yeast-like fungi of Candida spp., both C. albicans and C. non-albicans (C. parapsilosis and C. glabrata). The biofilm was destroyed in two of the three isolates of K. pneumoniae, C. freundii, A. baumannii, and S. agalactiae.
Conclusion: Among the Depantol components, chlorhexidine bigluconate 1% solution was 100% effective on bacterial films produced by Gardnerella vaginalis, Escherichia coli, Klebsiella piersonii, Enterococcus faecalis, Staphylococcus aureus and yeast-like fungi of Candida spp., both C. albicans and C. non-albicans (C. parapsilosis and C. glabrata). Its effectiveness was 70% for the other microorganisms.

Authors’ contributions: Savicheva A.M. – review of the publications on the topic of the article, analysis of the obtained data, approval of the final version of the article; Shalepo K.V., Spasibova E.V. – conducting the study, writing the manuscript; Budilovskaya O.V., Khusnutdinova T.A., Krysanova A.A., Cheberya A.S., Cheberya A.R. – editing the text, approval of the final version of the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The study was conducted without sponsorship.
Ethical Approval: The study was approved by the Ethical Review Board of the D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction.
Authors' Data Sharing Statement: The data supporting the findings of this study are available on request from the corresponding author after approval from the principal investigator.
For citation: Shalepo K.V., Spasibova E.V., Budilovskaya O.V., Krysanova A.A., Khusnutdinova T.A., Cheberya A.S., Cheberya A.R., Savicheva A.M. Evaluation of the in vitro effectiveness 
of the Depantol components on biofilms produced by vaginal microorganisms. 
 Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (10): 158-166 (in Russian)
https://dx.doi.org/10.18565/aig.2024.256

Keywords

biofilms
vaginal microorganisms
chlorhexidine bigluconate
dexpanthenol
macrogol
Depantol

References

  1. Limoli D.H., Jones C.J., Wozniak D.J. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol. Spectr. 2015; 3(3): 10.1128/microbiolspec.MB-0011-2014. https://dx.doi.org/10.1128/microbiolspec.MB-0011-2014.
  2. Atiencia-Carrera M.B., Cabezas-Mera F.S., Tejera E, Machado A. Prevalence of biofilms in Candida spp. bloodstream infections: A meta-analysis. PLoS One. 2022; 17(2): e0263522. https://dx.doi.org/10.1371/journal.pone.0263522.
  3. Cangui-Panchi S.P., Ñacato-Toapanta A.L., Enríquez-Martínez L.J., Reyes J., Garzon-Chavez D., Machado A. Biofilm-forming microorganisms causing hospital-acquired infections from intravenous catheter: A systematic review. Curr. Res. Microb. Sci. 2022; 3: 100175. https://dx.doi.org/10.1016/j.crmicr.2022.100175.
  4. Yin W., Wang Y., Liu L., He J. Biofilms: the microbial "Protective Clothing" in extreme environments. Int. J. Mol. Sci. 2019; 20(14): 3423. https://dx.doi.org/10.3390/ijms20143423.
  5. Cangui-Panchi S.P., Ñacato-Toapanta A.L., Enríquez-Martínez L.J., Salinas-Delgado G.A., Reyes J., Garzon-Chavez D. et al. Battle royale: Immune response on biofilms - host-pathogen interactions. Curr. Res. Immunol. 2023; 4: 100057. https://dx.doi.org/10.1016/j.crimmu.2023.100057.
  6. Ciarolla A.A., Lapin N., Williams D., Chopra R., Greenberg D.E. Physical approaches to prevent and treat bacterial biofilm. Antibiotics (Basel). 2022; 12(1): 54. https://dx.doi.org/10.3390/antibiotics12010054.
  7. Hall-Stoodley L., Stoodley P., Kathju S., Høiby N., Moser C., Costerton J.W. et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol. Med. Microbiol. 2012; 65(2): 127-45. https://dx.doi.org/10.1111/j.1574-695X.2012.00968.x.
  8. Lebeaux D., Chauhan A., Rendueles O., Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. 2013; 2(2): 288-356. https://dx.doi.org/10.3390/pathogens2020288.
  9. Bjarnsholt T., Ciofu O., Molin S., Givskov M., Høiby N. Applying insights from biofilm biology to drug development - can a new approach be developed?. Nat. Rev. Drug Discov. 2013; 12(10): 791-808. https://dx.doi.org/10.1038/nrd4000.
  10. Swidsinski A., Mendling W., Loening-Baucke V., Swidsinski S., Dörffel Y., Scholze J. et al. An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol. 2008; 198(1): 97.e1-6.1. https://dx.doi.org/10.1016/j.ajog.2007.06.039.
  11. Machado A., Jefferson K.K., Cerca N. Interactions between Lactobacillus crispatus and bacterial vaginosis (BV)-associated bacterial species in initial attachment and biofilm formation. Int. J. Mol. Sci. 2013; 14(6): 12004-12. https://dx.doi.org/10.3390/ijms140612004.
  12. Савичева А.М., Крысанова А.А., Шалепо К.В., Спасибова Е.В., Будиловская О.В., Хуснутдинова Т.А., Тапильская Н.И., Коган И.Ю., Свидзинский А.В., Свидзинская С. Применение метода флуоресцентной гибридизации in situ в диагностике бактериального вагиноза. Акушерство и гинекология. 2023; 12: 68-77. [Savicheva A.M., Krysanova A.A., Shalepo K.V., Spasibova E.V., Budilovskaya O.V., Khusnutdinova T.A., Tapilskaya N.I., Kogan I.Yu., Swidsinski A.V., Swidsinski S. Application of fluorescent in situ hybridization in the diagnosis of bacterial vaginosis. Obstetrics and Gynecology. 2023; (12): 68-77. (in Russian)]. https://dx.doi.org/10.18565aig.2023.129.
  13. Савичева А.М., Спасибова Е.В., Шалепо К.В. Исследование чувствительности Streptococcus agalactiae, выделенных из урогенитального тракта, к действующим веществам, входящим в состав препарата «Депантол». Российский вестник акушера-гинеколога. 2017; 17(6): 96-100. [Savicheva A.M., Spasibova E.V., Shalepo K.V. Investigation of the sensitivity of Streptococcus agalactiae isolated from the urogenital tract to the active substances included in the composition of Depantol. Russian Bulletin of Obstetrician-Gynecologist. 2017; 17(6): 96-100. (in Russian)]. https://dx.doi.org/10.17116/rosakush201717696-100.
  14. Gristina A.G., Costerton J.W. Bacterial adherence to biomaterials and tissue. The significance of its role in clinical sepsis. J. Bone Joint Surg. Am. 1985; 67: 264-73.
  15. LaFleur M.D., Kumamoto C.A., Lewis K. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 2006; 50(11): 3839-46. https://dx.doi.org/10.1128/AAC.00684-06.
  16. Lewis K. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 2001; 45(4): 999-1007. https://dx.doi.org/10.1128/AAC.45.4.999-1007.2001.
  17. Zhao A., Sun J., Liu Y. Understanding bacterial biofilms: From definition to treatment strategies. Front Cell Infect. Microbiol. 2023; 13: 1137947. https://dx.doi.org/10.3389/fcimb.2023.1137947.
  18. Шалепо К.В., Михайленко Т.Г., Савичева А.М. Роль бактериальных пленок в формировании хронических патологических процессов во влагалище и эндометрии. Журнал акушерства и женских болезней. 2016; 65(4): 65-75. [Shalepo K.V., Mihailenko T.G., Savicheva A.M. The role of bacterial biofilms in the development of chronic pathological processes in the vagina and endometrium. Journal of Obstetrics and Women's Diseases. 2016; 65(4): 65-75. (in Russian)]. https://dx.doi.org/10.17816/JOWD65465-75.
  19. Wang S., Zhao Y., Breslawec A.P., Liang T., Deng Z., Kuperman L.L. et al. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes. 2023; 9(1): 63. https://dx.doi.org/10.1038/s41522-023-00427-y.
  20. Harris J.B., Monir R.L., Schoch J.J. Chlorhexidine gluconate for antisepsis in preterm neonates: A review of safety and efficacy. Pediatr. Dermatol. 2024; 41(5): 786-92. https://dx.doi.org/10.1111/pde.15709.
  21. Sionov R.V., Steinberg D. Targeting the holy triangle of quorum sensing, biofilm formation, and antibiotic resistance in pathogenic bacteria. Microorganisms. 2022; 10(6): 1239. https://dx.doi.org/10.3390/microorganisms10061239.
  22. Shen Y., Stojicic S., Haapasalo M. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J. Endod. 2011; 37(5): 657-61. https://dx.doi.org/10.1016/j.joen.2011.02.007.
  23. Alvendal C., Mohanty S., Bohm-Starke N., Brauner A. Anti-biofilm activity of chlorhexidine digluconate against Candida albicans vaginal isolates. PLoS One. 2020; 15(9): e0238428. https://dx.doi.org/10.1371/journal.pone.0238428.
  24. Kramer A., Assadian O., Koburger-Janssen T. Antimicrobial efficacy of the combination of chlorhexidine digluconate and dexpanthenol. GMS Hyg. Infect. Control. 2016; 11: Doc24. https://dx.doi.org/10.3205/dgkh000284.

Received 18.10.2024

Accepted 23.10.2024

About the Authors

Kira V. Shalepo, PhD, Senior Researcher at the Department of Experimental Microbiology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
3 Mendeleyevskaya Line, St. Petersburg, 199034, Russia; Associate Professor at the Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, +7(911)247-41-51, 2474151@mail.ru, https://orcid.org/0000-0002-3002-3874
Elena V. Spasibova, bacteriologist at the Laboratory of Clinical Microbiology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
3 Mendeleyevskaya Line, St. Petersburg, 199034, Russia; Teaching Assistant at the Department of Clinical Laboratory Diagnostics of FP and DPO, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, elena.graciosae@gmail.com, https://orcid.org/0009-0002-6070-4651
Olga V. Budilovskaya, PhD, Senior Researcher at the Department of Medical Microbiology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
3 Mendeleyevskaya Line, St. Petersburg, 199034, Russia; Teaching Assistant at the Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, o.budilovskaya@gmail.com, https://orcid.org/ 0000-0001-7673-6274
Anna A. Krysanova, PhD, Senior Researcher at the Department of Experimental Microbiology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
3 Mendeleyevskaya Line, St. Petersburg, 199034, Russia; Associate Professor at the Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, krusanova.anna@mail.ru, https://orcid.org/ 0000-0003-4798-1881
Tatiana A. Khusnutdinova, PhD, Senior Researcher at the Department of Medical Microbiology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
3 Mendeleyevskaya Line, St. Petersburg, 199034, Russia; Teaching Assistant at the Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, husnutdinovat@yandex.ru, https://orcid.org/ 0000-0002-2742-2655
Alexandra S. Cheberya, laboratory assistant researcher at Microbiology Laboratory, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
3 Mendeleyevskaya Line, St. Petersburg, 199034, Russia; 6th year student, S.M. Kirov Military Medical Academy, alexa-vorobjeva.09@yandex.ru,
https://orcid.org/0009-0008-1091-5753
Alexander R. Cheberya, laboratory assistant researcher at Microbiology Laboratory, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
3 Mendeleyevskaya Line, St. Petersburg, 199034, Russia; 6th year student, S.M. Kirov Military Medical Academy, sanekcheberya@yandex.ru,
https://orcid.org/ 0009-0006-9058-6720
Alevtina M. Savicheva, Dr. Med. Sci., Professor, Head of the Department of Medical Microbiology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 3 Mendeleyevskaya Line, St. Petersburg, 199034, Russia; Head of the Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, savitcheva@mail.ru, https://orcid.org/ 0000-0003-3870-5930
Corresponding author: Kira V. Shalepo, 2474151@mail.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.