The evaluation of the effect of Epigen Intim spray on bacterial biofilms formed by vaginal microorganisms in vitro
Shalepo K.V., Spasibova E.V., Budilovskaya O.V., Krysanova A.A., Khusnutdinova T.A., Cheberya A.S., Cheberya A.R., Savicheva A.M.
Objective: To evaluate the effect of 0.1% Epigen Intim spray in vitro on bacterial biofilms formed by vaginal microorganisms.
Materials and methods: This was a study of 72 clinical isolates of pure cultures of microorganisms obtained from the vaginal biotope: G. vaginalis (3 isolates), E. faecalis (9 isolates), E. coli (18 isolates), K. pneumoniae (15 isolates), K. aerogenes (3 isolates), L. crispatus (3 isolates), S. pyogenes (3 isolates), A. baumannii (3 isolates), S. aureus (3 isolates), C. albicans (3 isolates), E. faecium (3 isolates), S. agalactiae (3 isolates), L. acidophilus (3 isolates). Dense and liquid selective culture media were used for cultivation, storage and further research. Microorganisms were identified using latex agglutination and MALDI-TOF mass spectrometry (Bruker Microflex). The ability to form biofilms was evaluated using a modified version of a protocol developed by Christensen et al. (1985).
In order to assess the effect on the bacterial biofilms, 0.1% Epigen Intim spray containing activated glycyrrhizic acid (0.1 g per 100 ml) was used.
Results: Among 72 clinical isolates of vaginal microorganisms, 38 demonstrated the ability to form bacterial biofilms (G. vaginalis, K. pneumoniae, E. coli, E. faecium). The tested clinical isolates of L. crispatus, L. acidophilus, C. albicans, S. agalactiae, S. pyogenes and others (34 isolates out of 72) did not form biofilms. Thus, 53% of the microorganisms inhabiting the vaginal biotope were able to form biofilms. These clinical isolates of microorganisms were included in the study. Epigen Intim spray showed high efficacy against 34 out of 38 (89.48%) isolates of microorganisms which form biofilms. The biofilms formed by 4 isolates of microorganisms (2 isolates of K. pneumoniae, E. coli and E. faecalis) were not affected by 0.1% Epigen Intim spray.
Conclusion: The biofilms formed by vaginal microorganisms such as G. vaginalis, K. pneumoniae, E. coli,
E. faecium are destroyed by 0.1% Epigen Intim spray, containing glycyrrhizic acid with an efficiency of 89.48% in vitro. It should be noted that a decrease in the optical density of the biofilm by more than 3 times indicates the biofilm-destroying effect of the medication. The ratio of change in optical density after exposure to 0.1% Epigen Intim spray ranged from 3.66 to 743 for 34 isolates of microorganisms.
Authors’ contributions: Savicheva A.M. – review of publications on the topic of the article, analysis of the data obtained, approval of the final version of the article; Shalepo K.V., Spasibova E.V. – conducting a study, writing of the manuscript; Budilovskaya O.V., Khusnutdinova T.A., Krysanova A.A., Cheberya A.S., Cheberya A.R. – manuscript editing, approval of the final version of the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The study was conducted without sponsorship.
Ethical Approval: The study was approved by the Ethical Review Board of the D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction, protocol No. 131 dated by November 28, 2023.
Authors’ Data Sharing Statement: The data supporting the findings of this study are available on request from the corresponding author after approval from the principal investigator.
For citation: Shalepo K.V., Spasibova E.V., Budilovskaya O.V., Krysanova A.A., Khusnutdinova T.A., Cheberya A.S., Cheberya A.R., Savicheva A.M. The evaluation of the effect of Epigen Intim spray on bacterial biofilms formed by vaginal microorganisms in vitro.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (2): 125-133 (in Russian)
https://dx.doi.org/10.18565/aig.2024.30
Keywords
References
- Hall-Stoodley L., Stoodley P., Kathju S., Høiby N., Moser C., Costerton J.W. et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol. Med. Microbiol. 2012; 65(2): 127-45. https://dx.doi.org/10.1111/j.1574-695X.2012.00968.x.
- Шалепо К.В., Михайленко Т.Г., Савичева А.М. Роль бактериальных пленок в формировании хронических патологических процессов во влагалище и эндометрии. Журнал акушерства и женских болезней. 2016; 65(4): 65-75. [Shalepo K.V., Mihailenko T.G., Savicheva A.M. The role of bacterial biofilms in the development of chronic pathological processes in the vagina and endometrium. Journal of Obstetrics and Women’s Diseases. 2016; 65(4): 65-75. (in Russian)]. https://dx.doi.org/10.17816/JOWD65465-75.
- Wilson J.D., Ralph S.G., Rutherford A.J. Rates of bacterial vaginosis in women undergoing in vitro fertilisation for different types of infertility. BJOG. 2002; 109(6): 714-7. https://dx.doi.org/10.1111/j.1471-0528.2002.01297.x.
- Hall C.W., Mah T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017; 41(3): 276-301. https://dx.doi.org/10.1093/femsre/fux010.
- Cosmetic Ingredient Review Expert Panel. Final report on the safety assessment of Glycyrrhetinic Acid, Potassium Glycyrrhetinate, Disodium Succinoyl Glycyrrhetinate, Glyceryl Glycyrrhetinate, Glycyrrhetinyl Stearate, Stearyl Glycyrrhetinate, Glycyrrhizic Acid, Ammonium Glycyrrhizate, Dipotassium Glycyrrhizate, Disodium Glycyrrhizate, Trisodium Glycyrrhizate, Methyl Glycyrrhizate, and Potassium Glycyrrhizinate. Int. J. Toxicol. 2007;26 (Suppl. 2): 79-112. https://dx.doi.org/10.1080/10915810701351228.
- Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., Beachey E.H. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985; 22(6): 996-1006. https://dx.doi.org/10.1128/jcm.22.6.996-1006.1985.
- Zafer M.M., Mohamed G.A., Ibrahim S.R.M., Ghosh S., Bornman C., Elfaky M.A. Biofilm-mediated infections by multidrug-resistant microbes: a comprehensive exploration and forward perspectives. Arch. Microbiol. 2024; 206(3): 101. https://dx.doi.org/10.1007/s00203-023-03826-z.
- García-Salazar G., Urbán-Morlán Z., Mendoza-Elvira S., Quintanar-Guerrero D., Mendoza S. Broad antiviral spectrum of glycyrrhizic acid for human and veterinary medicine: reality or fiction? Intervirology. 2023; 66(1): 41-53. https://dx.doi.org/10.1159/000528198.
- Baltina L.A., Tasi Y.T., Huang S.H., Lai H.C., Baltina L.A., Petrova S.F. et al. Glycyrrhizic acid derivatives as Dengue virus inhibitors. Bioorg. Med. Chem. Lett. 2019; 29(20): 126645. https://dx.doi.org/10.1016/j.bmcl.2019.126645.
- Ouyang J., Bu Q., Tao N., Chen M., Liu H., Zhou J. et al. A facile and general method for synthesis of antibiotic-free protein-based hydrogel: Wound dressing for the eradication of drug-resistant bacteria and biofilms. Bioact. Mater. 2022; 18: 446-58. https://dx.doi.org/10.1016/j.bioactmat.2022.03.033.
- Fu X., Ni Y., Wang G., Nie R., Wang Y., Yao R. et al. Synergistic and long-lasting wound dressings promote multidrug-resistant Staphylococcus aureus-infected wound healing. Int. J. Nanomedicine. 2023; 18: 4663-79. https://dx.doi.org/10.2147/IJN.S418671.
- Rohinishree Y.S., Negi P.S. Effect of licorice extract on cell viability, biofilm formation and exotoxin production by Staphylococcus aureus. J. Food Sci. Technol. 2016; 53(2): 1092-100. https://dx.doi.org/10.1007/s13197-015-2131-6.
- Mohammed E.A.H., Peng Y., Wang Z., Qiang X., Zhao Q. Synthesis, antiviral, and antibacterial activity of the Glycyrrhizic Acid and Glycyrrhetinic Acid derivatives. Russ. J. Bioorg. Chem. 2022; 48(5): 906-18. https://dx.doi.org/10.1134/S1068162022050132.
- Pastorino G., Cornara L., Soares S., Rodrigues F., Oliveira M.B.P.P. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytother. Res. 2018; 32(12): 2323-39. https://dx.doi.org/10.1002/ptr.6178.
- Li Q., He Q., Xu M., Li J., Liu X., Wan Z., Yang X. Food-grade emulsions and emulsion gels prepared by soy protein-pectin complex nanoparticles and Glycyrrhizic Acid nanofibrils. J. Agric. Food Chem. 2020; 68(4): 1051-63. https://dx.doi.org/10.1021/acs.jafc.9b04957.
- Cai D., Yang Y., Lu J., Yuan Z., Zhang Y., Yang X. et al. Injectable carrier-free hydrogel dressing with anti-multidrug-resistant Staphylococcus aureus and anti-inflammatory capabilities for accelerated wound healing. ACS Appl. Mater. Interfaces. 2022; 14(38): 43035-49. https://dx.doi.org/10.1021/acsami.2c15463.
- Chittrarasu M., Sathyanarayana S.S., Ahamed S., Aberna A., Bhavani S., Rajaraman G. Antimicrobial efficacy of liquorice against Enterococcus faecalis biofilms in various concentrations at time-dependent variables: An in vitro study. J. Conserv. Dent. 2019; 22(1): 7-11. https://dx.doi.org/10.4103/JCD.JCD_173_18.
- Chakotiya A.S., Tanwar A., Narula A., Sharma R.K. Alternative to antibiotics against Pseudomonas aeruginosa: Effects of Glycyrrhiza glabra on membrane permeability and inhibition of efflux activity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity. Microb. Pathog. 2016; 98: 98-105. https://dx.doi.org/10.1016/j.micpath.2016.07.001.
- de Oliveira J., Figueiredo V.P., Oliveira F., Belato K., Carvalho C., Jorge A., Oliveira L. Antifungal effect of plant extracts on Candida albicans biofilm on acrylic resin. Brazilian Dental Science. 2013; 16(3). https://dx.doi.org/10.14295/bds.2013.v16i3.909.
- Савичева А.М., Крысанова А.А., Шалепо К.В., Спасибова Е.В., Будиловская О.В., Хуснутдинова Т.А., Тапильская Н.И., Коган И.Ю., Свидзинский А.В., Свидзинская С. Применение метода флуоресцентной гибридизации in situ в диагностике бактериального вагиноза. Акушерство и гинекология. 2023; 12: 68-77. [Savicheva A.M., Krysanova A.A., Shalepo K.V., Spasibova E.V., Budilovskaya O.V., Khusnutdinova T.A., Tapilskaya N.I., Kogan I.Yu., Swidsinski A.V., Swidsinski S. Application of fluorescent in situ hybridization in the diagnosis of bacterial vaginosis. Obstetrics and Gynecology. 2023; (12): 68-77. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.129.
- Messier C., Grenier D. Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses. 2011; 54(6): e801-6. https://dx.doi.org/10.1111/j.1439-0507.2011.02028.x.
- Савичева А.М., Менухова Ю.Н., Воробьева Н.Е., Назарова В.В., Шалепо К.В., Ширшова Н.Ю., Башмакова М.А. Опыт комбинированной терапии у больных с бактериальным вагинозом. Российский вестник акушера-гинеколога. 2011; 11(3): 69-73. [Savicheva A.M., Menukhova Iu.N., Vorob’eva N.E., Nazarova V.V., Shalepo K.V., Shirshova N.Iu., Bashmakova M.A. Experience with combination therapy in patients with bacterial vaginosis. Russian Bulletin of Obstetrician-Gynecologist. 2011; 11(3): 69 73. (in Russian)].
- Качалина О.В., Матузкова А.А. Активированная глицирризиновая кислота в комплексном лечении пациенток с вагинитами и дисбиозом: результаты многоцентрового исследования. Акушерство и гинекология. 2023; 3: 115-20. [Kachalina O.V., Matuzkova A.A. Activated glycyrrhizic acid in the combination treatment of patients with vaginitis and dysbiosis:results of a multicenter study. Obstetrics and Gynecology. 2023; (3): 115-20. (in Russian)]. https://dx.doi.org/10.18565/aig.2023.26.
Received 12.02.2024
Accepted 22.02.2024
About the Authors
Kira V. Shalepo, PhD, MD, Senior Researcher, Experimental Microbiology Group, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034, St. Petersburg, Mendeleevskaya line, 3; Associate Professor, Department of Clinical Laboratory Diagnostics of AF and DPO, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, 194100, Russia, St. Petersburg, Litovskaya str., 2; PhD, MD, Senior Researcher, International Center for the Study of the Vitality and Resistance of Polymicrobial Communities and Biofilms, 2474151@mail.ru, https://orcid.org/0000-0002-3002-3874Elena V. Spasibova, bacteriologist, Laboratory of Clinical Microbiology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034, Russia, St. Petersburg, Mendeleyevskaya line, 3; Assistant, Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, 194100, Russia, St. Petersburg, Litovskaya str., 2; bacteriologist, International Center for the Study of the Vitality and Resistance of Polymicrobial Communities and Biofilms, elena.graciosae@gmail.com, https://orcid.org/0009-0002-6070-4651
Olga V. Budilovskaya, PhD, MD, Senior Researcher, Experimental Microbiology Group, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
199034, Russia, St. Petersburg, Mendeleevskaya line, 3; Assistant, Department of Clinical Laboratory Diagnostics of AF and DPO, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, 194100, Russia, St. Petersburg, Litovskaya str., 2; PhD, MD, Senior Researcher, International Center for the Study of the Vitality and Resistance of Polymicrobial Communities and Biofilms, o.budilovskaya@gmail.com, https://orcid.org/0000-0001-7673-6274
Anna A. Krysanova, PhD, MD, Researcher, Experimental Microbiology Group, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
199034, Russia, St. Petersburg, Mendeleyevskaya line, 3; Assistant, Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, 194100, Russia, St. Petersburg, Litovskaya str., 2; PhD, MD, Researcher, International Center for the Study of the Vitality and Resistance of Polymicrobial Communities and Biofilms, krusanova.anna@mail.ru, https://orcid.org/0000-0003-4798-1881
Tatiana A. Khusnutdinova, PhD, MD, Senior Researcher, Experimental Microbiology Group, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034, Russia, St. Petersburg, Mendeleyevskaya line, 3; Assistant, Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, 194100, Russia, St. Petersburg, Litovskaya str., 2; PhD, MD, Senior Researcher, International Center for the Study of the Vitality and Resistance of Polymicrobial Communities and Biofilms, husnutdinovat@yandex.ru, https://orcid.org/0000-0002-2742-2655
Alexandra S. Cheberya, laboratory assistant researcher at Microbiology Laboratory, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology,
199034, Russia, St. Petersburg, Mendeleevskaya Line, 3; 5th year student, S.M. Kirov Military Medical Academy, 194044, Russia, St. Petersburg, Academician Lebedev str., 37, alexa-vorobjeva.09@yandex.ru, https://orcid.org/0009-0008-1091-5753
Alexander R. Cheberya, laboratory assistant researcher at Microbiology Laboratory, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034, Russia, St. Petersburg, Mendeleevskaya Line, 3; 5th year student, S.M. Kirov Military Medical Academy, 194044, Russia, St. Petersburg, Academician Lebedev str., 37, sanekcheberya@yandex.ru, https://orcid.org/0009-0006-9058-6720
Alevtina M. Savicheva, Dr. Med. Sci., Professor, Head of the Department of Medical Microbiology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, 199034, Russiua, St. Petersburg, Mendeleevskaya line, 3; Head of the Department of Clinical Laboratory Diagnostics, St. Petersburg State Pediatric Medical University, Ministry of Health of Russia, 194100, Russia, St. Petersburg, Litovskaya str., 2; Head of the International Center for the Study of the Vitality and Resistance of Polymicrobial Communities and Biofilms, savitcheva@mail.ru, https://orcid.org/0000-0003-3870-5930