New advances in understanding the molecular mechanisms of human embryo implantation in in vitro fertilization programs

Charaeva A.V., Makarova N.P., Drapkina Yu.S., Kalinina E.A.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
The data available in the modern scientific literature on the role of the uterine and embryonic factors in failed euploid embryo implantation were systematically analyzed. The keywords “microRNA”, “small non-coding RNA”, “embryo implantation”, “implantation failure”, “implantation window”, “infertility treatment”, “thin endometrium”, “endometrial receptivity”, “molecular mechanisms”, and “gene expression” were used to search for literature sources in the Russian and foreign databases eLibrary, Medline/PubMed, and Embase. Differential expression of certain blastocyst microRNAs is shown to be associated with implantation failure. The paper describes the molecules involved in the transmission of maternal signals that are activated in the blastocyst trophectoderm. It reflects the mechanism of molecular regulation in endometrial receptivity and that of formation of a thin endometrium and genes identified in the networks that may play a certain role in the development of the thin endometrium.
Conclusion: The current evidence supports the promise of studying the molecular mechanisms of embryo implantation. Further investigations are needed to search for new biomarkers to select embryos with their good implantation potential, to assess endometrial receptivity for improving the outcomes of assisted reproductive technology programs, to reduce reproductive losses, and to give birth to healthy babies.

Authors’ contributions: Charaeva A.V., Makarova N.P. – literature data collection and analysis; Charaeva A.V., Drapkina Yu.S. – starting material processing, writing the article; Makarova N.P., Kalinina E.A. – editing the manuscript of the article.
Conflicts of interest: The authors declare that there are no possible conflicts of interest.
Funding: The investigation was supported by State Assignment No. 121040600410-7 “Solving the problem of infertility under the current conditions, by creating a clinical diagnostic model of infertile marriage and using innovative technologies in assisted reproduction programs” of the Ministry of Health of the Russian Federation.
For citation: Charaeva A.V., Makarova N.P., Drapkina Yu.S., Kalinina E.A.
New advances in understanding the molecular mechanisms of human embryo implantation in in vitro fertilization programs.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (3): 21-28 (in Russian)
https://dx.doi.org/10.18565/aig.2022.281

Keywords

assisted reproductive technologies
infertility
implantation
microRNA
uterine factor
embryonic factor
female infertility
preimplantation genetic testing

References

  1. Cimadomo D., Rienzi L., Giancani A., Alviggi E., Dusi L., Canipari R. et al. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: searching for biomarkers of implantation. Hum. Reprod. 2019; 34(9): 1746-61. https://dx.doi.org/10.1093/humrep/dez119.
  2. Liang J., Wang S., Wang Z. Role of microRNAs in embryo implantation. Reprod. Biol. Endocrinol. 2017; 15(1): 90. https://dx.doi.org/10.1186/s12958-017-0309-7.
  3. Cuman C., Van Sinderen M., Gantier M.P., Rainczuk K., Sorby K., Rombauts L. et al. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine. 2015; 2(10): 1528-35. https://dx.doi.org/10.1016/j.ebiom.2015.09.003.
  4. Borges E., Setti A.S., Braga D.P.A.F., Geraldo M.V., Figueira R. de C.S., Iaconelli A. miR-142-3p as a biomarker of blastocyst implantation failure - a pilot study. J. Bras. Reprod. Assist. 2016; 20(4): 200-5.https://dx.doi.org/10.5935/1518-0557.20160039.
  5. Acuña-González R.J., Olvera-Valencia M., López-Canales J.S., Lozano-Cuenca J., Osorio-Caballero M., Flores-Herrera H. MiR-191-5p is upregulated in culture media of implanted human embryo on day fifth of development. Reprod. Biol. Endocrinol. 2021; 19(1): 109. https://dx.doi.org/10.1186/s12958-021-00786-1.
  6. Wang Y., Lv Y., Gao S., Zhang Y., Sun J., Gong C. et al. MicroRNA profiles in spontaneous decidualized menstrual endometrium and early pregnancy decidua with successfully implanted embryos. PLoS One. 2016; 11: e0143116.https://dx.doi.org/10.1371/journal.pone.0143116.
  7. Тимофеева А.В., Калинина Е.А., Драпкина Ю.С., Чаговец В.В., Макарова Н.П., Сухих Г.Т. Оценка качества эмбриона по профилю экспрессии малых некодирующих РНК в культуральной среде эмбриона в программах ВРТ. Акушерство и гинекология. 2019; 6: 78-86.[Timofeeva A.V., Kalinina E.A., Drapkina Yu.S., Chagovets V.V., Makarova N.P, Sukhikh G.T. Embryo quality assessment by the small noncoding RNA expression profile in an embryo culture medium in assisted reproductive technology programs. Obstetrics and Gynecology. 2019; (6): 78-86. (in Russian)] https://dx.doi.org/10.18565/aig.2019.6.79-86.
  8. Capalbo A., Ubaldi F.M., Cimadomo D., Noli L., Khalaf Y., Farcomeni A. et al. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril. 2016; 105(1): 225-3.e1-3.https://dx.doi.org/10.1016/j.fertnstert.2015.09.014.
  9. Rosenbluth E.M., Shelton D.N., Sparks A.E.T., Devor E., Christenson L., Van Voorhis B.J. MicroRNA expression in the human blastocyst. Fertil. Steril. 2013; 99(3): 855-61.e3. https://dx.doi.org/10.1016/j.fertnstert.2012.11.001.
  10. Papadopoulos G.L., Alexiou P., Maragkakis M., Reczko M., Hatzigeorgiou A.G. Diana-mirPath: Integrating human and mouse microRNAs in pathways. Bioinformatics. 2009; 25(15): 1991-3. https://dx.doi.org/10.1093/bioinformatics/btp299.
  11. Medeiros L.A., Dennis L.M., Gill M.E., Houbaviy H., Markoulaki S., Fu D. et al. Mir-290–295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc. Natl. Acad. Sci. USA. 2011; 108(34): 14163-8. https://dx.doi.org/10.1073/pnas.1111241108.
  12. Marin D., Wang Y., Tao X., Scott R., Treff N. Comprehensive chromosome screening and gene expression analysis from the same biopsy in human preimplantation embryos. Mol. Hum. Reprod. 2017; 23(5): 330-8.https://dx.doi.org/10.1093/molehr/gax014.
  13. McCallie B., Schoolcraft W.B., Katz-Jaffe M.G. Aberration of blastocyst microRNA expression is associated with human infertility. Fertil. Steril. 2010; 93(7): 2374-82. https://dx.doi.org/10.1016/j.fertnstert.2009.01.069.
  14. Pokrovenko D., Vozniuk V., Medvediev M. MicroRNA let-7: A promising non-invasive biomarker for diagnosing and treating external genital endometriosis. Turk. J. Obstet. Gynecol. 2021; 18(4): 291-7. https://dx.doi.org/10.4274/tjod.galenos.2021.07277.
  15. Freis A., Keller A., Ludwig N., Meese E., Jauckus J., Rehnitz J. et al. Altered miRNA-profile dependent on ART outcome in early pregnancy targets Wnt-pathway. Reproduction. 2017; 154(6): 799-805. https://dx.doi.org/10.1530/REP-17-0396.
  16. Kranc W., Budna J., Chachu A., Borys S., Bryja A., Rybska M. et al. «Cell migration» is the ontology group differentially expressed in porcine oocytes before and after in vitro maturation: a microarray approach. DNA Cell Biol. 2017; 36(4): 273-82. https://dx.doi.org/10.1089/dna.2016.3425.
  17. Tepekoy F., Akkoyunlu G., Demir R. The role of Wnt signaling members in the uterus and embryo during pre-implantation and implantation. J. Assist. Reprod. Genet. 2014; 32(3): 337-46. https://dx.doi.org/10.1007/s10815-014-0409-7.
  18. Virant-Klun I., Ståhlberg A., Kubista M., Skutella T. MicroRNAs: from female fertility, germ cells, and stem cells to cancer in humans. Stem Cells Int. 2016; 2016: 3984937. https://dx.doi.org/10.1155/2016/3984937.
  19. Chobotova K., Spyropoulou I., Carver J., Manek S., Heath J.K., Gullick W.J. et al. Heparin-binding epidermal growth factor and its receptor ErbB4 mediate implantation of the human blastocyst. Mech. Dev. 2002; 119(2): 137-44.https://dx.doi.org/10.1016/S0925-4773(02)00342-8.
  20. Mohamed O.A., Jonnaert M., Labelle-Dumais C., Kuroda K., Clarke H.J., Dufort D. Uterine Wnt/beta-catenin signaling is required for implantation. Proc. Natl. Acad. Sci. USA. 2005; 102(24): 8579-84. https://dx.doi.org/10.1073/pnas.0500612102.
  21. Bloor D.J., Metcalfe A.D., Rutherford A., Brison D.R., Kimber S.J. Expression of cell adhesion molecules during human preimplantation embryo development. Mol. Hum. Reprod. 2002; 8(3): 237-45. https://dx.doi.org/10.1093/molehr/8.3.237.
  22. Kang Y.J., Forbes K., Carver J., Aplin J.D. The role of the osteopontin-integrin alphavbeta3 interaction at implantation: functional analysis using three different in vitro models. Hum. Reprod. 2014; 29(4): 739-49. https://dx.doi.org/10.1093/humrep/det433.
  23. Cha J., Sun X., Dey S.K. Mechanisms of implantation: strategies for successful pregnancy. Nat. Med. 2012; 18(12): 1754-67. https://dx.doi.org/10.1038/nm.3012.
  24. Chen G., Xin A., Liu Y., Shi C., Chen J., Tang X. et al. Integrins beta1 and beta3 are biomarkers of uterine condition for embryo transfer. J. Transl. Med. 2016; 14(1): 303. https://dx.doi.org/10.1186/s12967-016-1052-0.
  25. Dorostghoal M., Ghaffari H.O.A., Shahbazian N., Mirani M. Endometrial expression of beta3 integrin, calcitonin and plexin-B1 in the window of implantation in women with unexplained infertility. Int. J. Reprod. Biomed. 2017; 15(1): 33-40. https://dx.doi.org/10.29252/ijrm.15.1.33.
  26. Fitzgerald H.C., Evans J., Johnson N., Infusini G., Webb A., Rombauts L.J.R. et al. Idiopathic infertility in women is associated with distinct changes in proliferative phase uterine fluid proteins. Biol. Reprod. 2018; 98(6): 752-64.https://dx.doi.org/10.1093/biolre/ioy063.
  27. Azizi R., Aghebati-Maleki L., Nouri M., Marofi F., Negargar S., Yousefi M. Stem cell therapy in Asherman syndrome and thin endometrium: stem cell- based therapy. Biomed. Pharmacother. 2018; 102: 333-43.https://dx.doi.org/10.1016/j.biopha.2018.03.091.
  28. Du J., Lu H., Yu X., Dong L., Mi L., Wang J. et al. The effect of icariin for infertile women with thin endometrium: a protocol for systematic review. Medicine (Baltimore). 2020; 99(12): e19111. https://dx.doi.org/10.1097/MD.0000000000019111.
  29. Maekawa R., Taketani T., Mihara Y., Sato S., Okada M., Tamura I. et al. Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure. Reprod. Med. Biol. 2017; 16(2): 206-27.https://dx.doi.org/10.1002/rmb2.12030.
  30. Le A.W., Shan L.L., Dai X.Y., Xiao T.H., Li X.R., Wang Z.H. et al. PI3K, AKT, and P-AKT levels in thin endometrium. Genet. Mol. Res. 2016; 15(1).https://dx.doi.org/10.4238/gmr.15017184.
  31. Zong L., Zheng S., Meng Y., Tang W., Li D., Wang Z. et al. Integrated transcriptomic analysis of the miRNA–mRNA interaction network in thin endometrium. Front. Genet. 2021; 12: 589408. https://dx.doi.org/10.3389/fgene.2021.589408.
  32. Paul A.B.M., Sadek S.T., Mahesan A.M. The role of microRNAs in human embryo implantation: a review. J. Assist. Reprod. Genet. 2019; 36(2): 179-87. https://dx.doi.org/10.1007/s10815-018-1326-y.
  33. Di Pietro C., Caruso S., Battaglia R., Iraci Sareri M., La Ferlita A., Strino F. et al. MiR-27a-3p and miR-124-3p, upregulated in endometrium and serum from women affected by Chronic Endometritis, are new potential molecular markers of endometrial receptivity. Am. J. Reprod. Immunol. 2018; 80(3): e12858. https://dx.doi.org/10.1111/aji.12858.
  34. Mu Y., Li Q., Cheng J., Shen J., Jin X., Xie Z. et al. Integrated miRNA-seq analysis reveals the molecular mechanism underlying the effect of acupuncture on endometrial receptivity in patients undergoing fertilization: embryo transplantation. 3 Biotech. 2020; 10(1): 6. https://dx.doi.org/10.1007/s13205-019-1990-3.
  35. Rekker K., Altmae S., Suhorutshenko M., Peters, M., Martinez-Blanch J.F., Codoner F.M. et al. A two-cohort RNA-seq study reveals changes in endometrial and blood miRNome in fertile and infertile women. Genes (Basel). 2018; 9(12): 574. https://dx.doi.org/10.3390/genes9120574.
  36. Macklon N.S. Brosens J.J. The human endometrium as a sensor of embryo quality. Biol. Reprod. 2014; 91(4): 98. https://dx.doi.org/10.1095/biolreprod.114.122846.

Received 25.11.2022

Accepted 02.12.2022

About the Authors

Anna V. Charaeva, Сlinical resident, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(906)352-07-16, ashcherina@yandex.ru, https://orcid.org/0000-0002-2356-586X, 117997, Russia, Moscow, Academician Oparin str., 4.
Natalya P. Makarova, Dr. Bio. Sci., Leading Researcher, B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility, Academician V.I. Kulakov
National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(926)409-74-32, np_makarova@oparina4.ru,
117997, Russia, Moscow, Academician Oparin str., 4.
Yulia S. Drapkina, PhD, Researcher, B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(916)950-07-45, julia.drapkina@gmail.com,
117997, Russia, Moscow, Academician Oparin str., 4.
Elena A. Kalinina, Dr. Med. Sci., Professor, Head of the B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility, Academician V.I. Kulakov
National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, +7(495)438-07-88, e_kalinina@oparina4.ru,
117997, Russia, Moscow, Academician Oparin str., 4.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.