Molecular genetic deviations and obstetric pathology

Kovalev V.V., Kudryavtseva E.V.

Department of Obstetrics and Gynecology, Faculty for Advanced Training and Professional Retraining of Specialists, Ural State Medical University, Ministry of Health of Russia, Yekaterinburg, Russia
The paper reviews international researches in the role of various gene networks in the development of obstetric pathology. It considers not only the most studied hemostatic system and folate metabolism genes, but also renin-angiotensin-aldosterone system, detoxification system, and immune response ones and genes that regulate the function of the endothelium. In addition, an update on genome-wide studies investigating a genetic predisposition to pregnancy complications is analyzed.

Keywords

major obstetric syndromes
genetic polymorphism
clinical exome sequencing
preterm birth
preeclampsia

References

  1. Romero R. Prenatal medicine: The child is the father of the man. 1996. J Matern Fetal Neonatal Med. 2009; 22(8): 636–9. doi: 10.1080/14767050902784171.
  2. Uzun A., Schuster J., McGonnigal B., Schorl C., Dewan A., Padbury J. Targeted sequencing and meta-analysis of preterm birth. PLoS One. 2016; 11(5): e0155021. doi: 10.1371/journal.pone.0155021
  3. Strauss J.F., Romero R., Gomez-Lopez N., Haymond-Thornburg H., Modi B. P., Teves M.E., et al. Spontaneous preterm birth: advances toward the discovery of genetic predisposition. Am J Obstet Gynecol. 2018; 218(3): 294–314. doi: 10.1016/j.ajog.2017.12.009.
  4. Чурносов М.И., Кокорина О.С. Генетические исследования хронической плацентарной недостаточности и синдрома задержки роста плода. Российский вестник акушера-гинеколога. 2014; 1: 27–32.
  5. Di Renzo G.C. The great obstetrical syndromes. J Matern Fetal Neonatal Med. 2009; 22: 633–635. doi: 10.1080/14767050902866804.
  6. Brosens I., Pijnenborg R., Vervruysse L., Romero R. The «Great obstetrical syndromes» are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011; 204(3): 193–201. doi: 10.1016/j.ajog.2010.08.009.
  7. Mastrolia S.A., Mazor M., Loverro G., Klaitman V., Erez O. Placental vascular pathology and increased thrombin generation as mechanisms of desease in obstetrical syndromes. PerrJ. 2014; 18(2): e653. doi: 10.7717/peerj.653
  8. Тезиков Ю.В., Липатов И.С., Фролова Н.А., Кутузова О.А., Приходько А.В. Методология профилактики больших акушерских синдромов. Здоровье женщины. 2017; 10(126): 19. [Tezikov Yu.V., Lipatov I.S., Frolova N.A., Kutuzova O.A., Prikhod’ko A.V. Methodology of preventing major obstetrical syndromes. Zdorov’ye zhenshchiny/Woman’s health. 2017; 10(126): 19.(in Russian)]
  9. Цахилова С.Г., Акуленко Л.В., Кузнецов В.М., Балиос Л.В., Скобенников А.Ю., Созаева Л.Г., и др. Генетические предикторы преэклампсии (обзор литературы). Проблемы репродукции. 2017; 1: 110–4. [Tsakhilova S.G., Akulenko L.V., Kuznetsov V.M., Balios L.V., Skobennikov A.Yu., Sozayeva L.G., Mikhaylova Yu.V. Genetic predictors of preeclampsia (a review). Russian Journal of Human Reproduction/Problemy reproduktsii. 2017; 1: 110–4. (in Russian)]. doi: 10.17116/repro2017231110-114
  10. McPherson J.A., Manuck T.A. Genomics of preterm birth-evidence of association and evolving investigations. Am J Perinatol; 2016; 33(3): 222–8. doi: 10.1055/s-0035-1571144
  11. Dossenbach-Glaninger A., van Trotsenburg M., Oberkanins C., Atamaniuk J. Risk for early pregnancy loss by factor XIII Val34Leu: the impact of fibrinogen concentration. J Clin Lab Anal. 2013; 27(6): 444–9.doi: 10.1002/jcla.21626.
  12. Kamali M., Hantoushzadeh S., Borna S., Neamatzadeh Y., Mazaheri M., Noori-Shadkam M., et al. Associateon between trombophilic genes polymorphisms and recurrent pregnancy loss susceptibility in the Iranian population: a systematic review and meta-analysis. Iran Biomed J. 2017; 22(222): 78–89. doi: 10.22034/ibj.22.2.78
  13. Shi X., Xie X., Jia Y., Li S. Maternal genetic polymorphisms and unexplained recurrent miscarriage: a systematic review and meta-analysis. Clin Genet. 2017; 91(2): 265–84. doi: 10.1111/cge.12910
  14. Lenz B., Samardzija M., Drenjacevic D., Zibar D., Samardzija M., Milostic-Srb A. The investigation of hereditary and acquired thrombophilia risk factors in the development of complications in pregnancy in Croatian women. J Matern Fetal Neonatal Med. 2016; 29(2): 264–9. doi: 10.3109/14767058.2014.998189.
  15. Li X., Liu Y., Zhang R., Tan J., Chen L., Liu Y. Meta-analysis of the association between plasminogen activator inhibitor-1 4G/5G polymorphism and recurrent pregnancy loss. Med Sci Monit. 2015; 21: 1051–6. doi: 10.12659/MSM.892898.
  16. Giannkou K., Evangelou E., Papatheodorou S.I. Genetic and non-genetic risk factors for pre-eclampsia: umbrella review of systematic reviews and meta-analyses of observational studies. Ultrasound Obstet Gynecol. 2018; 51(6): 720–30. doi: 10.1002/uog.18959.
  17. Pileri P., Franchi F., Cetin I., Mando C., Antonazzo P., Ibrahim B., et al. Maternal and fetal thrombophilia in intrauterine growth restriction in the presence or absence of maternal hypertensive disease. Reprod Sci. 2010; 17(9): 844–8. doi: 10.1177/1933719110371516.
  18. Barlic M., Seremak-Mrozikiewicz A., Drews K., Klejewski A., Kurzawinska G., Lowicki Z., et al. Correlarion between factor VII and PAI-1 genetic variants and recurrent miscarriage. Ginekol Pol. 2016; 87(7): 504–9. doi: 10.5603/GP.2016.0034
  19. Jackson R.A., Nguyan M.L., Barrett A.N., Tan Y.Y., Choolani M.A., Chen E.S. Synthetic combinations of missense polymorphic genetic changes underlying Down Syndrome susceptibility. Cell Mol Life Sci. 2016; 73(21): 4001–17. doi:10.1007/s00018-016-2276-0
  20. Wu H., Zhu P., Geng X., Liu Z., Cui L., Gao Z., et al. Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet. 2017; 295(5): 1105–11. doi:10.1007/s00404-017-4322-z
  21. Fang Q., Jiang Y., Liu Z., Zhang Z., Zgang T. Systematic review and meta-analysis of the associations between maternal methylentetrahydrofolate reductase polymorphisms and preterm delivery. J obstet Gynaecol Res. 2018; 44(4): 663–72. doi:10.1186/s13098-019-0451-9
  22. Nan Y., Li H. MTHFR genetic polymorphism increases the risk of preterm delivery. Int J Clin Exp Pathol. 2015; 8(6): 7397–402. PMCID:PMC4525976
  23. Chedraui P., Andrade M.E., Salazar-Pousada D., Escobar G.S., Hidalgo L., Ramirez C., et al. Polymorphisms of the methylentetrahydrofolate reductase gene (C677T and A1298C) in the placenta of pregnancies complicated with preeclampsia. Gynecol Endocrinol. 2015; 31(7): 569–72. doi: 10.3109/09513590.2015.1031104.
  24. Chen J., Chen L., Zhu L.H., Zhang S.T., Wu Y.L. Assotiation of methylentetrahydrofolate reductase (MTHFR) C677T polymorphism with preterm delivery and placental abruption: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2016; 95(2): 157–65. doi:10.1007/s10815-019-01473-2
  25. Hwang K.R., Choi Y.M., Kim J.J., Lee S.K., Yang K.M., Palk E.S., et al. Methylentetrahydrofolate reductase polymorphisms and risk of recurrent pregnancy loss: a case control study. J Korean Med Sci. 2017; 32(12): 2029–34. doi:10.3346/jkms.2017.32.12.2029
  26. Nowak I., Bylinska A., Wilcznska A. The methylentetrahydrofolate reductase c.c. 677 C>T and c.c. 1298 A>C polymorphisms in reproducrive failures: experience from RSA and RIF study on a polish population. PloS One. 2017; 12(10): e0186022. doi:10.1371/journal.pone.0186022
  27. Татарский П.Ф., Кучеренко А.М., Хажиленко К.Г., Зинченко В.М., Ильин И.Е., Лившиц Л.А. Исследования возможной роли полиморфизма генов системы детоксикации и коагуляции крови в патогенезе потери беременности. Biopolimers and cell. 2011; 27 (3): 214–20. [Tatarskyy P.F., Kucherenko A.M., Khazhilenko K.G., Zinchenko V. M., Ilyin I. E., Livshits L.A. Study of the possible role of polymorphisms of the detoxication and coagulation system genes in pathogenesis of pregnancy loss. Biopolimers and cell. 2011; 27 (3): 214–20. (in Russian)]. doi: 10.7124/bc.0000BC
  28. Баранов В.С., ред. Генетический паспорт – основа индивидуальной и предиктивной медицины. CПб.: ООО «Издательство Н-Л», 2009. 528 c. [Baranov V.S., red. Geneticheskiy pasport – osnova individual’noy i prediktivnoy meditsiny. CPb.: OOO «Izdatel’stvo N-L», 2009. 528 s.(in Russian)]
  29. Groten T., Schleussner E., Lehmann T., et al. eNOSI4 and EPHX1 polymorphisms affect maternal susceptibility to preeclampsia: analysis of five polymorphisms predisposing to cardiovascular disease in 279 Caucasian and 241 African women. Arch Gynecol Obstet. 2014; 289 (3): 581–93. doi: 10.1007/s00404-013-2991-9.
  30. Sandoval-Carrillo A., Aguilar-Duran M., Vázquez-Alaniz F., Castellanos-Juárez F.X., Barraza-Salas M., Sierra-Campos E., et al. Polymorphisms in the GSTT1 and GSTM1 genes are associated with increased risk of preeclampsia in the Mexican mestizo population. Genet. Mol. Res. 2014; 13(1): 2160–5. doi: 10.4238/2014.January.17.3
  31. Будюхина О.А., Барановская Е.И., Левданский О.Д., Даниленко Н.Г. Полиморфизм генов глутатион-S-трансфераз у пациенток с хронической фетоплацентарной недостаточностью. Здравоохранение. 2010; 6: 14–5.[Budyukhina O.A., Baranovskaya E.I., Levdansky O.D., Danilenko N.G. Polymorphism of glutathione-s-transferase genes in patients with chronic fetoplacental insufficiency. Zdravookhraneniye. 2010; 6: 14–5. (in Russian)].eLIBRARY ID: 21770288
  32. Фетисова И.Н., Панова И.А., Малышкина А.И. Полиморфизм генов ренин-ангиотензин-альдостероновой системы у женщин с гипертензивными расстройствами при беременности. Таврический медико-биологический вестник. 2017; 20 (2): 160–5. [Fetisova I. N., Panova I.A., Malyshkina A.I., Fetisov N.S., Ratnicova S.Y., Rokotynskaya E.A. Polymorphism of genes of renin-angiotensin-aldosterone system in women with hypertensive disorders in pregnancy. Tavricheskiy mediko-biologicheskiy vestnik/Tauride Medical and Biological Bulletin.. 2017; 20 (2): 160–5. (in Russian)]
  33. Li Y., Zhu M., Hu R., Yan W. The effects of gene polymorphisms in angiotensin II receptors on pregnancy-induced hypertension and preeclampsia: a systematic rewiew and meta-analysis. Hypertens Pregnancy. 2015, 34(2): 241–60. doi: 10.3109/10641955.2015.1009543.
  34. Capece A., Vasiava O., Meher S., Alfirevic Z., Alfirevic A. Pathway analysis of genetic factors associated with spontaneus preterm birth and pre-labor preterm rupture of membranes. PLoS One. 2014. 9(9): e108578. doi: 10.1371/journal.pone.0108578
  35. Saboori S., Noormohammadi Z., Zare-Karizi S. Genetic variation in vascular endothelial growth factor gene and its association with recurrent spontaneous abortion. Bratisl Lek Listy. 2016; 117(2): 80–6. doi: 10.4149/BLL_2016_016
  36. Li Y., Yao C.J., Tao F.B., Luo C.M., Cao Y., Su-Juan Z. Association between maternal tumor necrosis factor-α G308A polymorphism and interferon-γ A874T polymorphism and risk of preterm birth: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2015 Jul; 190: 11–9. doi: 10.1016/j.ejogrb.2015.04.003
  37. Zhou L., Cheng L., He Y., Gu Y., Wang Y., Wang C. Association of gene polymorphisms of FV, FII, MTHFR, Serpine1, CTL4A, IL10, and TNF alpha with pre-eclampsia in Chinese women. Inflamm Res. 2016; 65(9): 717–24. doi:10.1007/s00011-016-0953-y
  38. Pereza N., Ostojic S., Kapovic M., Peterlin B. Systematic review and meta-analysis of genetic assotiation studies in idiopathic recurrent spontaneous abortion. Fertil Steril. 2017; 107(1): 150–9. doi: 10.1016/j.rbmo.2015.11.003
  39. Procopciuc L.M., Caracostea G., Zaharie G., Stamatian F. Maternal/newborn VEGF-C936T interaction and its influence on the risk, severity and prognosis of preeclampsia, as well as on the maternal angiogenic profile. J matern Fetal Neonatal Med. 2014; 27(17): 1754–60. doi: 10.3109/14767058.2014.942625.
  40. Garza-Veloz I., Castruita-De la Rosa C., Cortes-Flores R., Martinez-Gaytan V., Rivera-Munoz J.E., Garcia-Mayorga E.A., et al. No association between polymorphisms/haplotypes of the vascular endothelial growth factor gene and preeclampsia. BMC Pregnancy Childbirth. 2011; 16(11): 35. doi: 10.1186/1471-2393-11-35
  41. Глотов А.С., Вашукова Е.С., Глотов О.С., Насыхова Ю.А., Мазур А.М., Курилов Р.В., и др. Исследование популяционных частот полиморфизма генов, ассоциированных с гестозом. Экологическая генетика. 2013; 11(7): 91–100. [Glotov A.S., Vashukova E.S., Glotov O.S., Nasykhova Yu.A., Mazur A.M., Kurilov R.V., et al. Study of population frequencies of genes polymorphism associated with preeclampsia-associated genes polymorphism. Ekologicheskaya genetika. 2013; 11(7): 91–100. (in Russian)] eLIBRARY ID: 20279952
  42. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А., и др. Руководство по интерпретации данных, полученных методами массового параллельного секвенирования (MPS). Медицинская генетика. 2017; 16(7): 4–17. [Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanasyev A.A., Zaklyazminskaya E.V., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kutsev S.I. Guidelines for the interpretation of massive parallel sequencing variants. Medical Genetics. 2017;16(7): 4–17. (In Russian)]
  43. Morgan L. Update of genetics of preeclampsia. Pregnancy Hypertens. 2013; 3(2): 59–60. doi: 10.1016/j.preghy.2013.04.009
  44. Workalemahu T., Enquobahrie D.A, Gelaye B., et al. Genetic variations and risk of placental abruption: A genome-wide association study and meta-analysis of genome-wide association studies. Placenta. 2018; 66: 8–16. doi:10.1016/j.placenta.2018.04.008
  45. Kaartokallio T., Wang J., Heinonen S. , Kajantie E., Kivinen K., Pouta A., et al. Exome sequencing in pooled DNA samples to identify maternal pre-eclampsia risk. Sci Rep. 2016; 6: 29085. doi: 10.1038/srep29085.
  46. Johnson M., Loset M., Brennecke S., Brennecke S.P., Peralta J., Dyer T.D., et al. Exome sequencing identifies likely functional variants influencing preeclampsia and CVD risk. Pregnancy Hypertens. 2012; 2(3): 203–4. doi: 10.1016/j.preghy.2012.04.050
  47. Hansen A.T., Bernth Jensen J.M., Hvas A.V., Christiansen M. The genetic component of preeclampsia: a whole-exome sequencing study. PLos One. 2018; 13(5): e0197217. doi:10.1371/journal.pone.0197217
  48. Modi B.P., Teves M.E., Pearson L.N. Parikh H.I., Chaemsaithong P., Sheth N.U., et al. Rare mutations and potencially damaging missense variants in genes encoding fibrilar collagens and proteins involved in their production are camdidates for risk for preterm premature rupture of membranes. PLoS One. 2017; 12(3): e0174356. doi: 10.1371/journal.pone.0174356.
  49. Modi B.P., Teves M.E., Pearson L.N. Parikh H.I., Haymond-Thornburg H., Tucker J.L. et al. et al. Mutetions in fetal genes involved in innate immunity and host defense against microbes increase risk of preterm premature rupture of membranes (PPROM). Mol Genet Genomic Med. 2017; 5(6): 720–9. doi: 10.1002/mgg3.330

Received 04.03.2019

Accepted 19.04.2019

About the Authors

Vladislav V. Kovalel, MD, prof., USMU, Department of Obstetrics and Gynecology of faculty of postgraduate education. Phone: +7(919)360-0670.
E-mail: vvkovalev55@gmail.com7 620109 Russia, Ekaterinburg, Repina str., 3.
Elena V. Kudryavtseva, PhD., assotiated professor, USMU, Department of Obstetrics and Gynecology of faculty of postgraduate education. Phone: +7(922)616-4012.
E-mail: elenavladpopova@yandex.ru; https://orcid.org/0000-0003-2797-19267 620109 Russia, Ekaterinburg, Repina str., 3.

For citation: Kovalev V.V., Kudryavtseva E.V. Molecular genetic deviations and obstetric pathology.
Akusherstvo i Ginekologiya/ Obstetrics and gynecology. 2020;1: 26-32. (In Russian).
https://dx.doi.org/10.18565/aig.2020.1. 26-32

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.