Placental mitochondria in health and in preeclampsia

Vishnyakova P.A., Kan N.E., Khodzhaeva Z.S., Vysokikh M.Yu.

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia
Objective. To analyze the data available in modern scientific literature on the relationship between preeclampsia and the mitochondrial reticulum.
Materials and methods. The review included the data available in international peer-reviewed databases. Both works of pioneers in this area and contemporary publications on the topic in question were considered.
Results. The paper describes the basic mechanisms of mitochondrial involvement in the development of preeclampsia, such as cell redox reaction imbalance, apoptotic death, mitochondrial DNA mutations, and structural changes in the mitochondrial reticulum.
Conclusion. Oxidative stress observed in maternal preeclampsia results from complex dysfunction in the mitochondrial reticulum that needs to be thoroughly and comprehensively investigated.

Keywords

preeclampsia
mitochondria
oxidative stress
apoptosis
mitochondrial DNA mutations

References

1. World Health Organization. WHO recommendations for prevention and treatment of pre-eclampsia and eclampsia. 2011. Available at: http://www.ncbi.nlm.nih.gov/books/NBK140561/. Accessed 23 May 2016.

2. Vest A.R., Cho L.S. Hypertension in pregnancy. Cardiol. Clin. 2012; 30(3):407-23.

3. Khodzhaeva Z.S., Kogan E.A., Klimenchenko N.I., Akatyeva A.S., Kholin A.M., Vavina O.V., Sukhikh G.T. Clinical and pathogenetic features of early and late preeclampsia. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2015; (1): 12-7. (in Russian)

4. Khodzhaeva Z.S., Kholin A.M., Vikhlyaeva E.M. Early and late preeclampsia: Pathobiology paradigms and clinical practice. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2013; (10): 4-11. (in Russian)

5. Berg J.M., Tymoczko J.L., Stryer L. Biochemistry. 5th ed. New York: W. H. Freeman and Company; 2002.

6. Simon H.U., Haj-Yehia A., Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000; 5(5): 415-8.

7. Yang Y., Bazhin A.V., Werner J., Karakhanova S. Reactive oxygen species in the immune system. Int. Rev. Immunol. 2013; 32(3): 249-70.

8. Cooke M.S., Evans M.D., Dizdaroglu M., Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003; 17(10):1195-214.

9. Sabharwal S.S., Schumacker P.T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat. Rev. Cancer. 2014; 14: 709-21.

10. Torbergsen T., Øian P., Mathiesen E., Borud O. Pre-eclampsia--a mitochondrial disease? Acta Obstet. Gynecol. Scand. 1989; 68(2): 145-8.

11. Shanklin D.R., Sibai B.M. Ultrastructural aspects of preeclampsia. II. Mitochondrial changes. Am. J. Obstet. Gynecol. 1990; 163(3): 943-53.

12. Salgado S.S., Salgado M.K.R. Structural changes in pre-eclamptic and eclamptic placentas--an ultrastructural study. J. Coll. Physicians Surg. Pak. 2011; 21(8): 482-6.

13. Wang Y., Walsh S.W. Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta. 1998; 19(8): 581-6.

14. Can M., Guven B., Bektas S., Arikan I. Oxidative stress and apoptosis in preeclampsia. Tissue Cell. 2014; 46(6): 477-81.

15. D’Souza V., Rani A., Patil V., Pisal H., Randhir K., Mehendale S. et al. Increased oxidative stress from early pregnancy in women who develop preeclampsia. Clin. Exp. Hypertens. 2016; 38(2): 225-32.

16. Myatt L., Cui X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004; 122(4): 369-82.

17. Myatt L., Muralimanoharan S., Maloyan A. Effect of preeclampsia on placental function: influence of sexual dimorphism, microRNA’s and mitochondria. Adv. Exp. Med. Biol. 2014; 814: 133-46.

18. Myatt L. Role of placenta in preeclampsia. Endocrine. 2002; 19: 103-11.

19. Burton G.J., Yung H.W., Murray A.J. Mitochondrial - endoplasmic reticulum interactions in the trophoblast: stress and senescence. Placenta. 2016; Apr 4.

20. ung T.-H., Burton G.J. Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J. Obstet.Gynecol. 2006; 45: 189-200.

21. Ding D., Scott N.M., Thompson E.E., Chaiworapongsa T., Torres R., Billstrand C. et al. Increased protein-coding mutations in the mitochondrial genome of African American women with preeclampsia. Reprod. Sci. 2012; 19(12):1343-51.

22. Folgerø T., Storbakk N., Torbergsen T., Øian P. Mutations in mitochondrial transfer ribonucleic acid genes in preeclampsia. Am. J. Obstet. Gynecol. 1996; 174(5): 1626-30.

23. de Laat P., Fleuren L.H.J., Bekker M.N., Smeitink J.A.M., Janssen M.C.H. Obstetric complications in carriers of the m.3243A>G mutation, a retrospective cohort study on maternal and fetal outcome. Mitochondrion. 2015; 25: 98-103.

24. Ishihara N., Matsuo H., Murakoshi H., Laoag-Fernandez J.B., Samoto T., Maruo T. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am. J. Obstet. Gynecol. 2002; 186(1): 158-66.

25. Tomas S.Z., Prusac I.K., Roje D., Tadin I. Trophoblast apoptosis in placentas from pregnancies complicated by preeclampsia. Gynecol. Obstet. Invest. 2011; 71(4): 250-5.

26. Sood R., Zehnder J.L., Druzin M.L., Brown P.O. Gene expression patterns in human placenta. Proc. Natl. Acad. Sci. USA. 2006; 103(14): 5478-83.

27. Yu J., Guo X., Chen R., Feng L. Downregulation of mitofusin 2 in placenta is related to preeclampsia. Biomed. Res. Int. 2016; 2016: 6323086.

28. Vishnyakova P.A., Volodina M.A., Tarasova N.V., Marey M.V., Tsvirkun D.V., Vavina O.V. et al. Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci. Rep. 2016; 6: 32410.

29. Landes T., Leroy I., Bertholet A., Diot A., Khosrobakhsh F., Daloyau M. et al. OPA1 (dys)functions. Semin. Cell Dev. Biol. 2010; 21(6): 593-8.

30. Olichon A., Guillou E., Delettre C., Landes T., Arnaun-Pelloquin L., Emorine L.J. et al. Mitochondrial dynamics and disease, OPA1. Biochim. Biophys. Acta. 2006; 1763(5-6): 500-9.

31. Fülöp L., Szanda G., Enyedi B., Várnai P., Spät A. The effect of OPA1 on mitochondrial Ca2+ signaling. PLoS One. 2011; 6(9): e25199.

32. Elachouri G., Vidoni S., Zanna C., Pattyn A., Boukhaddaoui H., Gaget K. et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 2011; 21(1): 12-20.

Received 09.11.2016

Accepted 11.11.2016

About the Authors

Vishnyakova Polina Alexandrovna, Researcher, Laboratory of Mitochondrial Medicine, Research Center of Obstetrics of Gynecology and Perinatology,
Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. E-mail: p_vishnyakova@oparina4.ru. ORCID: 0000-0001-8650-8240
Kan Natalia Enkynovna, MD, head of Obstetric Observational Department, Research Center of Obstetrics of Gynecology and Perinatology, Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel: +79262208655. E-mail: kan-med@mail.ru
Khodzaeva Zulfiya Sagdullaevna, MD, professor, senior researcher, Research Center of Obstetrics of Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. E-mail: z_khodzhaeva@mail.ru
Vyoskikh Mikhail, Candidate of Biological Sciences, Head of the Laboratory of Mitochondrial Medicine, Research Center of Obstetrics of Gynecology and Perinatology, Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. E-mail: m_vysokikh@oparina4.ru

For citations: Vishnyakova P.A., Kan N.E., Khodzhaeva Z.S.,
Vysokikh M.Yu. Placental mitochondria in health and in preeclampsia.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (5): 5-8. (in Russian)
http://dx.doi.org/10.18565/aig.2017.5.5-8

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.