Granulosa cells as sources of reactive oxygen species

Shestakova M.A., Proskurnina E.V., Shcherbakova L.N., Panina O.B.

1 N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia 2 M.V. Lomonosov Moscow State University, Moscow, Russia
Objective. To summarize the data available in the literature on the sources of reactive oxygen species in the granulosa cells and their physiological and pathophysiological significance for the female reproductive system.
Material and methods. Publications from the PubMed database were used to make this review.
Results. The review considers in detail the prooxidant and antioxidant components of free radical homeostasis in the granulosa cells. It gives data on the impact of the oxidative status of granulosa on the success of an in vitro fertilization procedure.
Conclusion. Free radicals produced by granulosa cells play a dual role in ovarian homeostasis, by simultaneously participating in intracellular cascades and exerting a damaging effect on follicle cells. The oxidative status of granulosa should be taken into account when working out new assisted reproductive technology programs.


granulosa cells
oxidative stress
reactive oxygen species
in vitro fertilization


  1. Проскурнина Е.В., Шестакова М.А., Рабаданова А.К., Созарукова М.М., Шалина Р.И. Антиоксидантный статус фолликулярной жидкости у пациенток с бесплодием, проходящих процедуру экстракорпорального оплодотворения, и его связь с качеством эмбриона. Архив акушерства и гинекологии им. В.Ф. Снегирева. 2017; 4(3): 159-163.
  2. Сыркашева А.Г., Коротченко О.Е. Окислительный стресс антиоксидантная терапия при прегравидарной подготовке и/или при бесплодии. Медицинский совет. 2017; 13: 150-156.
  3. Иванча К.А., Сыркашева А.Г., Володина М.А., Пятаева С.В., Суханова Ю.А., Высоких М.Ю. Роль маркеров оксидативного стресса в прогнозировании исходов вспомогательных репродуктивных технологий. Акушерство и гинекология. 2017(5): 98-103.
  4. Karuputhula N.B., Chattopadhyay R., Chakravarty B., Chaudhury K. Oxidative status in granulosa cells of infertile women undergoing IVF. Syst Biol Reprod Med. 2013; 59(2): 91-8.
  5. Ciani F., Cocchia N., D’angelo D., Tafuri S. Influence of ROS on ovarian functions, in New Discoveries in Embryology. 2015, InTech.
  6. Bilbao M.G., Di Yorio M.P., Galarza R.A., Varone C.L., Faletti A.G. Regulation of the ovarian oxidative status by leptin during the ovulatory process in rats. Reproduction. 2015; 149(4): 357-66.
  7. Chen Q., Zhang W., Ran H., Feng L., Yan H., Mu X. et al. PKCdelta and theta possibly mediate FSH-induced mouse oocyte maturation via NOX-ROS-TACE cascade signaling pathway. PloS one. 2014; 9(10): e111423.
  8. Maraldi T., Resca E., Nicoli A., Beretti F., Zavatti M., Capodanno F. et al. NADPH oxidase-4 and MATER expressions in granulosa cells: Relationships with ovarian aging. Life sciences. 2016; 162: 108-14.
  9. Mihalik J., Kravcukova P., Hodorova I., Vecanova J. Activity of Monoamine Oxidases in Rat Female Genital Organs During Preimplantation Period of Pregnancy. Acta Medica Martiniana. 2011; 11(1): 16-22.
  10. Blohberger J., Buck T., Berg D., Berg U., Kunz L., Mayerhofer A. L-DOPA in the human ovarian follicular fluid acts as an antioxidant factor on granulosa cells. J Ovarian Res. 2016; 9(1): 62.
  11. Mihalik J., Maslankova J., Spakovska T., Marekova M., Hodorova I., Kusnir J. et al. Impact of 2 doses of clorgyline on the rat preimplantation embryo development and the monoamine levels in urine. Reproductive sciences. 2010; 17(8): 734-41.
  12. Saller S., Merz-Lange J., Raffael S., Hecht S., Pavlik R., Thaler C. et al. Norepinephrine, active norepinephrine transporter, and norepinephrine-metabolism are involved in the generation of reactive oxygen species in human ovarian granulosa cells. Endocrinology. 2012; 153(3): 1472-83.
  13. Shkolnik K., Tadmor A., Ben-Dor S., Nevo N., Galiani D., Dekel N. Reactive oxygen species are indispensable in ovulation. Proc Natl Acad Sci U S A. 2011; 108(4): 1462-7.
  14. Kim S.F. The role of nitric oxide in prostaglandin biology; update. Nitric oxide: biology and chemistry. 2011; 25(3): 255-64.
  15. Matsuda F., Inoue N., Manabe N., Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. The Journal of reproduction and development. 2012; 58(1): 44-50.
  16. Yu P.L., Lin T.M., Wang S.W., Wang P.S. Antisteroidogenic effects of hydrogen peroxide on rat granulosa cells. Free Radic. Res. 2012; 46(6): 718-25.
  17. Luderer U. Ovarian toxicity from reactive oxygen species. Vitam Horm. 2014; 94: 99-127.
  18. Banerjee J., Shaeib F., Maitra D., Saed G.M., Dai J., Diamond M.P. et al. Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle structure in vitro. Fertil Steril. 2013; 100(2): 578-84.e1.
  19. Goud P.T., Goud A.P., Joshi N., Puscheck E., Diamond M.P., Abu-Soud H.M. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertil Steril. 2014; 102(1): 151-159.e5.
  20. Ávila J., González-Fernández R., Rotoli D., Hernández J., Palumbo A. Oxidative Stress in Granulosa-Lutein Cells From In Vitro Fertilization Patients. Reprod Sci. 2016; 23(12): 1656-1661.
  21. Noda Y., Ota K., Shirasawa T., Shimizu T. Copper/zinc superoxide dismutase insufficiency impairs progesterone secretion and fertility in female mice. Biology of reproduction. 2012; 86(1): 1-8.
  22. Wang S., He G., Chen M., Zuo T., Xu W., Liu X. The Role of Antioxidant Enzymes in the Ovaries. Oxidative medicine and cellular longevity. 2017; 2017: 4371714.
  23. Ufer C., Wang C.C., Borchert A., Heydeck D., Kuhn H. Redox control in mammalian embryo development. Antioxidants & redox signaling. 2010; 13(6): 833-75.
  24. Meng Y., Qian Y., Gao L., Cai L.B., Cui Y.G., Liu J.Y. Downregulated expression of peroxiredoxin 4 in granulosa cells from polycystic ovary syndrome. PLoS One. 2013; 8(10): e76460.
  25. Combelles C.M.H., Gupta S., Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reproductive biomedicine online. 2009; 18(6): 864-880.
  26. Nakamura B.N., Fielder T.J., Hoang Y.D., Lim J., Mcconnachie L.A., Kavanagh T.J. et al. Lack of maternal glutamate cysteine ligase modifier subunit (Gclm) decreases oocyte glutathione concentrations and disrupts preimplantation development in mice. Endocrinology. 2011; 152(7): 2806-15.
  27. Al-Gubory K.H., Fowler P.A., Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. The international journal of biochemistry & cell biology. 2010; 42(10):1634-50.
  28. Akbari A., Jelodar G., Nazifi S., Sajedianfard J. An Overview of the Characteristics and Function of Vitamin C in Various Tissues: Relying on its Antioxidant Function. Zahedan Journal of Research in Medical Sciences.2016; 18(11).
  29. Rossetto R., Lima-Verde I.B., Matos M.H., Saraiva M.V., Martins F.S., Faustino L.R. et al. Interaction between ascorbic acid and follicle-stimulating hormone maintains follicular viability after long-term in vitro culture of caprine preantral follicles. Domestic animal endocrinology. 2009; 37(2): 112-23.
  30. Ruder E.H., Hartman T.J., Blumberg J., Goldman M.B. Oxidative stress and antioxidants: exposure and impact on female fertility. Human reproduction update. 2008; 14(4): 345-57.
  31. Farzollahi M., Tayefi-Nasrabadi H., Mohammadnejad D., Abedelahi A. Supplementation of culture media with vitamin E improves mouse antral follicle maturation and embryo development from vitrified ovarian tissue. The journal of obstetrics and gynaecology research. 2016; 42(5): 526-35.
  32. Mirzaei M., Razi M., Sadrkhanlou R. Nanosilver particles increase follicular atresia: Correlation with oxidative stress and aromatization. Environmental toxicology. 2017; 32(10): 2244-2255.
  33. Stanley J.A., Sivakumar K.K., Arosh J.A., Burghardt R.C., Banu S.K. Edaravone mitigates hexavalent chromium-induced oxidative stress and depletion of antioxidant enzymes while estrogen restores antioxidant enzymes in the rat ovary in F1 offspring. Biology of reproduction. 2014; 91(1): 12.
  34. Tripathy S., Asaithambi K., Jayaram P., Medhamurthy R. Analysis of 17beta-estradiol (E2) role in the regulation of corpus luteum function in pregnant rats: Involvement of IGFBP5 in the E2-mediated actions. Reproductive biology and endocrinology: RB&E. 2016; 14: 19.
  35. Tamura H., Takasaki A., Taketani T., Tanabe M., Kizuka F., Lee L. et al. Melatonin as a free radical scavenger in the ovarian follicle. Endocr J. 2013; 60(1): 1-13.
  36. Tanabe M., Tamura H., Taketani T., Okada M., Lee L., Tamura I. et al. Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice. J Reprod Dev. 2015; 61(1): 35-41.
  37. Kishi I., Ohishi M., Akiba Y., Asada H., Konishi Y., Nakano M. et al. Thioredoxin, an antioxidant redox protein, in ovarian follicles of women undergoing in vitro fertilization. Endocr J. 2016; 63(1): 9-20.
  38. Becatti M., Fucci R., Mannucci A., Barygina V., Mugnaini M., Criscuoli al. A Biochemical Approach to Detect Oxidative Stress in Infertile Women Undergoing Assisted Reproductive Technology Procedures. International journal of molecular sciences. 2018; 19(2).
  39. Tatone C., Amicarelli F. The aging ovary - the poor granulosa cells. Fertility and sterility. 2013; 99(1): 12-7.
  40. Liu Y., Han M., Li X., Wang H., Ma M., Zhang S. et al. Age-related changes in the mitochondria of human mural granulosa cells. Human reproduction. 2017; 32(12): 2465-2473.
  41. Shi L., Zhang J., Lai Z., Tian Y., Fang L., Wu M. et al. Long-Term Moderate Oxidative Stress Decreased Ovarian Reproductive Function by Reducing Follicle Quality and Progesterone Production. PloS one. 2016; 11(9):e0162194.
  42. Liu J., Li Y. [Effect of oxidative stress and apoptosis in granulosa cells on the outcome of IVF-ET]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010; 35(9): 990-4.
  43. Turan V., Sezer E.D., Zeybek B., Sendag F. Infertility and the presence of insulin resistance are associated with increased oxidative stress in young, non-obese Turkish women with polycystic ovary syndrome. Journal of pediatric and adolescent gynecology. 2015; 28(2): 119-23.
  44. Furat Rencber S., Kurnaz Ozbek S., Eraldemir C., Sezer Z., Kum T., Ceylan S. et al. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: an experimental study. Journal of ovarian research. 2018; 11(1): 55.
  45. Mandal A., Hoop C.L., Delucia M., Kodali R., Kagan V.E., Ahn J. et al. Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c. Biophysical journal. 2015; 109(9):1873-84.
  46. Bettegowda A., Patel O.V., Lee K.B., Park K.E., Salem M., Yao J. et al. Identification of novel bovine cumulus cell molecular markers predictive of oocyte competence: functional and diagnostic implications. Biology of reproduction. 2008; 79(2): 301-9.
  47. Filali M., Frydman N., Belot M.P., Hesters L., Gaudin F., Tachdjian G. et al. Oocyte in-vitro maturation: BCL2 mRNA content in cumulus cells reflects oocyte competency. Reproductive biomedicine online. 2009; 19 Suppl 4: 4309.
  48. Huang Z., Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Molecular human reproduction. 2010; 16(10): 715-25.
  49. Almeida C.P., Ferreira M.C.F., Silveira C.O., Campos J.R., Borges I.T., Baeta P.G. et al. Clinical correlation of apoptosis in human granulosa cells-A review. Cell biology international. 2018; 42(10): 1276-1281.
  50. Landry D.A., Rossi-Perazza L., Lafontaine S., Sirard M.A. Expression of atresia biomarkers in granulosa cells after ovarian stimulation in heifers. Reproduction. 2018; 156(3): 239-248.

Received 10.04.2018

Accepted 20.04.2018

About the Authors

Shestakova, Maja A., student of the Pirogov Russian National Research Medical University.
117997, Russia, Moscow, Ostrovityanova str. 1. Tel.: +74991475508. E-mail:
Proskurnina, Elena V., PhD, associate professor of the Department of Medical Biophysics, Faculty of Fundamental Medicine of the Lomonosov Moscow State University. 119992, Russia, Moscow, Lomonosovsky prosp. 27-1. Tel.: +7499147-5508. E-mail:
Scherbakova, Liya N., PhD, associate professor of the Department of Obstetrics and Gynecology, Faculty of Fundamental Medicine of the Lomonosov Moscow State University. 119992, Russia, Moscow, Lomonosovsky prosp. 27-1. Tel.: +74991475508. E-mail:
Panina, Olga B., MD, professor, head of the Department of Obstetrics and Gynecology, Faculty of Fundamental Medicine of the Lomonosov Moscow State University.
119992, Russia, Moscow, Lomonosovsky prosp. 27-1. Tel.: +74991475508. E-mail:

For citation: Shestakova M.A., Proskurnina E.V., Shcherbakova L.N., Panina O.B. Granulosa cells as sources of reactive oxygen species. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2019; (1): 42-9. (in Russian)
http: //

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.