Controversial issues of antenatal glucocorticoid use in fetal growth retardation

Leonova A.A., Kan N.E., Tyutyunnik V.L., Borisova A.G., Gasymova S.R.

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia

The paper presents the analysis of modern literature data on the effect of glucocorticoids on the fetus with intrauterine growth retardation. The research focuses on mechanisms and scientific hypotheses that describe the effects of glucocorticoids on various organs and tissues of the fetus including the central nervous system with adverse consequences for further postnatal development. The role of 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD1 and 11β-HSD2) is discussed. The studies conducted on both humans and animals have shown that acute and chronic stress can affect the expression of 11ß-HSD2 in the placenta in different ways. The expression of 11ß-HSD2 is stimulated in acute stress reactions, the expression of 11ß-HSD2 in the placenta is inhibited in chronic stress. It is likely that activation of placental 11ß-HSD2 in acute stress can be defined as an immediate protective measure taken by the fetus against a sudden increase in maternal glucocorticoids, while inhibition of placental 11ß-HSD2 in chronic stress may be a strategy adopted by the fetus for its survival. According to recent data, there is a decrease in the activity of 11ß-HSD2 when intrauterine growth is delayed. This decrease causes an elevation in the level of cortisol in the fetal blood which leads to disorders of postnatal development, cardiovascular and neuroendocrine pathology in the postnatal period of life. The use of antenatal glucocorticoids in pregnant women who are at risk of preterm birth and diagnosed with fetal growth retardation remains controversial: excessive exposure to glucocorticoids interferes with the normal development of the fetal nervous system. Conclusion: Due to the high frequency of the use of synthetic glucocorticoids in pregnant women who are at risk of preterm birth, it would be interesting to study the long-term effects of such action on the development of children in various periods of ontogenesis, especially in children with intrauterine growth retardation. Therefore, it is necessary to clarify the cellular and molecular mechanisms that cause placental dysfunction in fetal growth retardation in order to optimize the tactics of management of pregnant women with this pregnancy complication.

Authors’ contributions: Leonova A.A., Kan N.E., Tyutyunnik V.L., Borisova A.G., Gasymova S.R. – developing the concept and design of the study, obtaining the data for analysis, collecting publications, processing and analyzing material on the topic, writing the text of the manuscript, editing the article.

Conflicts of interest: The authors declare no conflicts of interest.

Funding: The study was conducted without sponsorship.

For citation: Leonova A.A., Kan N.E., Tyutyunnik V.L., Borisova A.G., Gasymova S.R. Controversial issues of antenatal glucocorticoid use in fetal growth retardation. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (10): 14-20 (in Russian) https://dx.doi.org/10.18565/aig.2023.157

Keywords

fetal growth retardation
glucocorticoids
infant respiratory distress syndrome
prevention
metabolic syndrome
11ß-hydroxysteroid dehydrogenase enzymes

References

  1. Cruz-Topete D., Cidlowski J.A. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1-2): 20-32. https://dx.doi.org/10.1159/000362724.
  2. Zhu P., Wang W., Zuo R., Sun K. Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life. Cell. Mol. Life Sci. 2019; 76(1): 13-26. https://dx.doi.org/10.1007/s00018-018-2918-5.
  3. Wieczorek A., Perani C.V., Nixon M., Constancia M., Sandovici I., Zazara D.E. et al. Sex-specific regulation of stress-induced fetal glucocorticoid surge by the mouse placenta. Am. J. Physiol. Endocrinol. Metab. 2019; 317(1): E109-E120. https://dx.doi.org/10.1152/ajpendo.00551.2018.
  4. Juszczak G.R., Stankiewicz A.M. Glucocorticoids, genes and brain function. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018; 82: 136-68. https://dx.doi.org/10.1016/j.pnpbp.2017.11.020.
  5. Briceño-Pérez C., Reyna-Villasmil E., Vigil-De-Gracia P. Antenatal corticosteroid therapy: historical and scientific basis to improve preterm birth management. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019; 234: 32-7. https://dx.doi.org/10.1016/j.ejogrb.2018.12.025.
  6. Balci O., Ozdemir S., Mahmoud A.S., Acar A., Colakoglu M.C. The effect of antenatal steroids on fetal lung maturation between the 34th and 36th week of pregnancy. Gynecol. Obstet. Invest. 2010; 70(2): 95-9. https://dx.doi.org/10.1159/000295898.
  7. Wang J., Chen F., Zhu S., Li X., Shi W., Dai Z. et al. Adverse effects of prenatal dexamethasone exposure on fetal development. J. Reprod. Immunol. 2022; 151: 103619. https://dx.doi.org/10.1016/j.jri.2022.103619.
  8. Lanciotti L., Correani A., Pasqualini M., Antognoli L., Dell'Orto V.G., Giorgetti C. et al. Respiratory distress syndrome in preterm infants of less than 32 weeks: what difference does giving 100 or 200 mg/kg of exogenous surfactant make? Pediatr. Pulmonol. 2022; 57(9): 2067-73. https://dx.doi.org/10.1002/ppul.25979.
  9. Межинский С.С., Карпова А.Л., Мостовой А.В., Андреев А.В., Шилова Н.А., Харламова Н.В. Обзор Европейских согласительных рекомендаций по ведению новорожденных с респираторным дистресс-синдромом. Неонатология: новости, мнения, обучение. 2019; 7(3): 46-58. [Mezhinsky S.S., Karpova A.L., Mostovoy A.V., Andreev A.V., Shilova N.A., Kharlamova N.V. Review of the European consensus guidelines for the management of neonates with respiratory distress syndrome. Neonatology: News, Opinions, Training. 2019; 7(3): 46-58. (in Russian)].
  10. Melamed N., Baschat A., Yinon Y., Athanasiadis A., Mecacci F., Figueras F. et al. FIGO (International Federation of Gynecology and Obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 2021; 152(Suppl. 1): 13-57. https://dx.doi.org/10.1002/ijgo.13522.
  11. Sweet D.G., Carnielli V.P., Greisen G., Hallman M., Klebermass-Schrehof K., Ozek E. et al. European consensus guidelines on the management of respiratory distress syndrome: 2022 update. Neonatology. 2023; 120(1): 3-23. https://dx.doi.org/10.1159/000528914.
  12. Siemiątkowska A., Kosicka K., Szpera-Goździewicz A., Krzyścin M., Bręborowicz G.H., Główka F.K. Cortisol metabolism in pregnancies with small for gestational age neonates. Sci. Rep. 2019; 9(1): 17890. https://dx.doi.org/10.1038/s41598-019-54362-0.
  13. Министерство здравоохранения Российской Федерации. Преждевременные роды. Клинические рекомендации (протокол лечения). М.; 2020. 54с. [Ministry of Health of the Russian Federation. Premature birth. Clinical guidelines (treatment protocol). Moscow; 2020. 54p. (in Russian)].
  14. Roberts D., Brown J., Medley N., Dalziel S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2017; 3(3): CD004454. https://dx.doi.org/10.1002/14651858.CD004454.pub3.
  15. Ting J.Y., Kingdom J.C., Shah P.S. Antenatal glucocorticoids, magnesium sulfate, and mode of birth in preterm fetal small for gestational age. Am. J. Obstet. Gynecol. 2018; 218(2, Suppl.): S818-S828. https://dx.doi.org/10.1016/j.ajog.2017.12.227.
  16. Павлович С.В. Антенатальная профилактика респираторного ди­стресс-синдрома новорожденных. Акушерство и гинекология. 2011; 3: 81-5. [Pavlovich S.V. Antenatal prevention of respiratory distress syndrome in newborns. Obstetrics and Gynecology. 2011; (3): 81-5. (in Russian)].
  17. Ганичкина М.Б., Мантрова Д.А., Кан Н.Е., Тютюнник В.Л., Хачатурян А.А., Зиганшина М.М. Ведение беременности при задержке роста плода. Акушерство и гинекология. 2017; 10: 5-11. [Ganichkina М.B., Mantrova D.A., Kan N.E., Tyutyunnik V.L., Khachaturyan A.A., Ziganshina M.M. Pregnancy management with fetal growth retardation. Obstetrics and Gynecology. 2017; (10): 5-11. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.10.5-11.
  18. Wan L., Luo K., Chen P. Mechanisms underlying neurologic injury in intrauterine growth restriction. J. Child Neurol. 2021; 36(9): 776-84. https://dx.doi.org/10.1177/0883073821999896.
  19. Министерство здравоохранения Российской Федерации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). Клинические рекомендации (протокол лечения). М.; 2022. 71с. [Ministry of Health of the Russian Federation. Insufficient growth of the fetus, requiring the provision of medical care to the mother (fetal growth retardation). Clinical guidelines (treatment protocol). Moscow; 2022. 71p. (in Russian)].
  20. Mitsiakos G., Kovacs L., Papageorgiou A. Are antenatal steroids beneficial to severely growth restricted fetuses? J. Matern. Fetal Neonatal Med. 2013; 26(15): 1496-9. https://dx.doi.org/10.3109/14767058.2013.789852.
  21. Hodges R.J., Wallace E.M. Mending a growth-restricted fetal heart: should we use glucocorticoids? J. Matern. Fetal Neonatal Med. 2012; 25(11): 2149-53. https://dx.doi.org/10.3109/14767058.2012.697940.
  22. Sheng J.A., Bales N.J., Myers S.A., Bautista A.I., Roueinfar M., Hale T.M., Handa R.J. The hypothalamic-pituitary-adrenal axis: development, programming actions of hormones, and maternal-fetal nteractions. Front. Behav. Neurosci. 2021; 14: 601939. https://dx.doi.org/10.3389/fnbeh.2020.601939.
  23. Jahnke J.R., Terán E., Murgueitio F., Cabrera H., Thompson A.L. Maternal stress, placental 11β-Hydroxysteroid Dehydrogenase Type 2, and infant HPA axis development in humans: psychosocial and physiological pathways. Placenta. 2021; 104: 179-87. https://dx.doi.org/10.1016/j.placenta.2020.12.008.
  24. Dahlerup B.R., Egsmose E.L., Siersma V.¸ Mortensen E.L., Hedegaard M., Knudsen L.E., Mathiesen L. Maternal stress and placental function, a study using questionnaires and biomarkers at birth. PLoS One. 2018; 13(11): e0207184. https://dx.doi.org/10.1371/journal.pone.0207184.
  25. Lamadé E.K., Hendlmeier F., Wudy S.A., Witt S.H., Rietschel M., Coenen M. et al. Rhythm of fetoplacental 11β-Hydroxysteroid Dehydrogenase Type 2 - fetal protection from morning maternal glucocorticoids. J. Clin. Endocrinol. Metab. 2021; 106(6): 1630-6. https://dx.doi.org/10.1210/clinem/dgab113.
  26. Fu L., Bo Q.L., Gan Y., Chen Y.H., Zhao H., Tao F.B., Xu D.X. Association among placental 11β-HSD2, PPAR-γ, and NF-κB p65 in small-for-gestational-age infants: a nested case-control study. Am. J. Reprod. Immunol. 2020; 83(5): e13231. https://dx.doi.org/10.1111/aji.13231.
  27. Shearer F.J.G., Wyrwoll C.S., Holmes M.C. The role of 11β-Hydroxy Steroid Dehydrogenase Type 2 in glucocorticoid programming of affective and cognitive behaviours. Neuroendocrinology. 2019; 109(3): 257-65. https://dx.doi.org/10.1159/000499660.
  28. Murphy V.E., Clifton V.L. Alterations in human placental 11beta-Hydroxysteroid Dehydrogenase Type 1 and 2 with gestational age and labour. Placenta. 2003; 24(7): 739-44. https://dx.doi.org/10.1016/s0143-4004(03)00103-6.
  29. Blankenship S.A., Brown K.E., Simon L.E., Stout M.J., Tuuli M.G. Antenatal corticosteroids in preterm small-for-gestational age infants: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. MFM. 2020; 2(4): 100215. https://dx.doi.org/10.1016/j.ajogmf.2020.100215.
  30. Ding Y.X., Cui H. The brain development of infants with intrauterine growth restriction: role of glucocorticoids. Horm. Mol. Biol. Clin. Investig. 2019; 39(1). https://dx.doi.org/10.1515/hmbci-2019-0016.
  31. Baud O., Berkane N. Hormonal changes associated with intra-uterine growth restriction: impact on the developing brain and future neurodevelopment. Front. Endocrinol. (Lausanne). 2019; 10: 179. https://dx.doi.org/10.3389/fendo.2019.00179.
  32. Yu P., Zhou J., Ge C., Fang M., Zhang Y., Wang H. Differential expression of placental 11β-HSD2 induced by high maternal glucocorticoid exposure mediates sex differences in placental and fetal development. Sci. Total Environ. 2022; 827: 154396. https://dx.doi.org/10.1016/j.scitotenv.2022.154396.
  33. Сухарева Е.В. Роль кортикотропин-рилизинг гормона и его рецепторов в регуляции нейрофизиологических и поведенческих реакций на стресс. Вавиловский журнал генетики и селекции. 2021; 25(2): 216-23. [Sukhareva E.V. The role of the corticotropin-releasing hormone and its receptors in the regulation of stress response. Vavilov Journal of Genetics and Breeding. 2021; 25(2): 216-23. (in Russian)]. https://dx.doi.org/10.18699/VJ21.025.
  34. Suarez A., Lahti J., Lahti-Pulkkinen M., Girchenko P., Czamara D., Arloth J. et al. A polyepigenetic glucocorticoid exposure score at birth and childhood mental and behavioral disorders. Neurobiol. Stress. 2020; 13: 100275. https://dx.doi.org/10.1016/j.ynstr.2020.100275.
  35. Rizzo G., Mappa I., Bitsadze V., Khizroeva J., Makatsariya A., D'Antonio F. Administration of antenatal corticosteroid is associated with reduced fetal growth velocity: a longitudinal study. J. Matern. Fetal Neonatal Med. 2022; 35(14): 2775-80. https://dx.doi.org/10.1080/14767058.2020.1800634.
  36. Tzschoppe A., Struwe E., Blessing H., Fahlbusch F., Liebhaber G., Dörr H.G. et al. Placental 11beta-HSD2 gene expression at birth is inversely correlated with growth velocity in the first year of life after intrauterine growth restriction. Pediatr. Res. 2009; 65(6): 647-53. https://dx.doi.org/10.1203/PDR.0b013e31819e7337.
  37. Shallie P.D., Naicker T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int. J. Dev. Neurosci. 2019; 73: 41-9. https://dx.doi.org/10.1016/j.ijdevneu.2019.01.003.
  38. Caparros-Gonzalez R.A., Lynn F., Alderdice F., Peralta-Ramirez M.I. Cortisol levels versus self-report stress measures during pregnancy as predictors of adverse infant outcomes: a systematic review. Stress. 2022; 25(1): 189-212. https://dx.doi.org/10.1080/10253890.2022.2059348.
  39. Gómez-Roig M.D., Mazarico E., Cárdenas D., Fernandez M.T., Díaz M., Ruiz de Gauna B. et al. Placental 11B-Hydroxysteroid Dehydrogenase Type 2 mRNA levels in intrauterine growth restriction versus small-for-gestational-age fetuses. Fetal Diagn. Ther. 2016; 39(2): 147-51. https://dx.doi.org/10.1159/000437139.
  40. Galbally M., Watson S.J., Lappas M., de Kloet E.R., van Rossum E., Wyrwoll C. et al. Fetal programming pathway from maternal mental health to infant cortisol functioning: the role of placental 11β-HSD2 mRNA expression. Psychoneuroendocrinology. 2021; 127: 105197. https://dx.doi.org/10.1016/j.psyneuen.2021.105197.
  41. Должиков А.А., Бобынцев И.И., Белых А.Е., Должикова И.Н. Стресс, кортикостероидные повреждения гиппокампа и нервно-психическая патология. Курский научно-практический вестник «Человек и его здоровье». 2017; 2: 98-105. [Dolzhikov A.A., Bobyntsev I.I., Belykh A.E, Dolzhikova I.N. Stress, corticosteroid damage of hippocampus and neuropsychological pathology. Kursk Scientific and Practical Bulletin "Man and His Health". 2017; (2): 98-105. (in Russian)]. https://dx.doi.org/10.21626/vestnik/2017-2/17.
  42. Ходжаева З.С., Горина К.А. Антенатальная профилактика респираторного дистресс-синдрома плода: взгляд в будущее. Акушерство и гинекология. 2019; 5: 12-8. [Khodzhaeva Z.S., Gorina K.A. Antenatal prevention of fetal respiratory distress syndrome: a look into the future. Obstetrics and Gynecology. 2019; (5): 12-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.5.12-18.
  43. Шайтарова А.В., Храмова Е.Б., Суплотова Л.А. Дискуссионные вопросы влияния глюкокортикоидной терапии беременных на здоровье детей. Вопросы современной педиатрии. 2011; 10(2): 82-5. [Shaytarova A.V., Khramova Y.B., Suplotova L.A. Discussion questions of influence of corticosteroid treatment in pregnant women on children’s health. Current Pediatrics. 2011; 10(2): 82-5. (in Russian)].

Received 16.06.2023

Accepted 13.09.2023

About the Authors

Anastasia A. Leonova, postgraduate student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(937)453-54-27, nastena27-03@mail.ru, https://orcid.org/0000-0001-6707-3464, 117997, Russia, Moscow, Ac. Oparina str., 4.
Natalia E. Kan, Professor, MD, PhD, Deputy Director of Science, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(926)220-86-55, kan-med@mail.ru. Researcher ID: B-2370-2015, SPIN-код: 5378-8437, Authors ID: 624900, Scopus Author ID: 57008835600, https://orcid.org/0000-0001-5087-5946, 117997, Russia, Moscow, Ac. Oparina str., 4.
Victor L. Tyutyunnik, Professor, MD, PhD, Leading Researcher of the Center for Scientific and Clinical Research, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(903)969-50-41, tioutiounnik@mail.ru. Researcher ID: B-2364-2015, SPIN-код: 1963-1359, Authors ID: 213217, Scopus Author ID: 56190621500, https://orcid.org/0000-0002-5830-5099, 117997, Russia, Moscow, Ac. Oparina str., 4.
Anastasia G. Borisova, postgraduate student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology,
Ministry of Health of Russia, +7(968)735-40-81, vvv92@list.ru, https://orcid.org/0009-0004-5234-1584, 117997, Russia, Moscow, Ac. Oparina str., 4.
Shagane R. Gasymova, Junior Researcher, Department of Fetal Medicine, Institute of Obstetrics; ultrasound diagnostics doctor, Department of Ultrasound and Functional Diagnostics, obstetrician-gynecologist, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology Ministry of Health of Russia, +7(916)542-22-99, shagane2501@mail.ru, https://orcid.org/0009-0001-2626-6670, 117997, Russia, Moscow, Ac. Oparina str. 4.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.