Biological and biochemical protective factors of the vagina and cervical canal: mechanisms of stability and correction options

Kira E.F., Priputnevich T.V., Kira E.E.

1) N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia; 2) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia; 3) I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russia

The female reproductive tract contains hundreds of species of bacteria that produce numerous metabolites. Cervical mucus and immune complexes prevent an infection from ascending to the uterus, which is relatively free of microbes. Normal cervico-vaginal microbiota supports the cervical epithelium as a holistic barrier and modulates the mucosal immune system. Disturbances in microbiota composition are accompanied by changes in microbial metabolites that cause local inflammation, damage the cervical epithelium and immune barrier, and increase susceptibility to sexually transmitted infections.
The present review describes the close relationships between the cervico-vaginal microbiota, its metabolites and the cervical epithelial, immune and mucosal barrier. A comprehensive understanding of sanogenesis and homeostasis of the vagina and cervix is essential for making appropriate diagnoses of dysbiotic and inflammatory processes, as well as for selecting suitable therapeutic methods for vaginal infections. This paper reviews the role of combination therapies for the treatment of vaginal infections and the prospect of restoring cervico-vaginal eubiosis.
Conclusion: The use of molecular detection technology in human samples, cells and animal biological studies may help to identify new diagnostic and therapeutic targets for treatment of female reproductive diseases.

Authors’ contributions: Kira E.F., Priputnevich T.V. – planning, developing the design of the study, editing the text; Kira E.E. – searching and analyzing literature data, translating articles, writing sections of the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The study was conducted without sponsorship.
For citation: Kira E.F., Priputnevich T.V., Kira E.E. Biological and biochemical protective factors of the vagina and cervical canal: mechanisms of stability and correction options. 
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (3): 30-42 (in Russian)
https://dx.doi.org/10.18565/aig.2025.33

Keywords

cervico-vaginal microbiota
bacterial vaginosis
non-specific vaginitis
lactobacilli
combined antibacterial drugs

References

  1. Scillato M., Spitale A., Mongelli G., Privitera G.F., Mangano K., Cianci A. et al. Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. Microbiologyopen. 2021; 10(2): e1173. https://dx.doi.org/10.1002/mbo3.1173.
  2. Kwok L., Stapleton A.E., Stamm W.E., Hillier S.L., Wobbe C.L., Gupta K. Adherence of Lactobacillus crispatus to vaginal epithelial cells from women with or without a history of recurrent urinary tract infection. J. Urol. 2006; 176(5): 2050-4; discussion 2054. https://dx.doi.org/10.1016/j.juro.2006.07.014.
  3. Кира Е.Ф. Бактериальный вагиноз. М.: МИА; 2012. 472 с. [Kira E.F. Bacterial vaginosis. Moscow: MIA; 2012. 472 p. (in Russian)].
  4. Smith S.B., Ravel J. The vaginal microbiota, host defence and reproductive physiology. J. Physiol. 2017; 595(2): 451-63. https://dx.doi.org/10.1113/JP271694.
  5. Всемирная организация здравоохранения. Вирус папилломы человека и рак. Доступно по: https://www.who.int/ru/news-room/fact-sheets/detail/human-papilloma-virus-and-cancer (доступ 14.08.2024). [WHO. Human papillomavirus and cancer. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/human-papilloma-virus-and-cancer (accessed 14.08.2024)].
  6. Ravel J., Gajer P., Abdo Z., Schneider G.M., Koenig S.S., McCulle S.L. et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. U. S. A. 2011; 108 Suppl 1(Suppl 1): 4680-7. https://dx.doi.org/10.1073/pnas.1002611107.
  7. Ma B., Forney L.J., Ravel J. Vaginal microbiome: rethinking health and disease. Annu. Rev. Microbiol. 2012; 66: 371-89. https://dx.doi.org/10.1146/annurev-micro-092611-150157.
  8. Alonzo Martínez M.C., Cazorla E., Cánovas E., Martínez-Blanch J.F., Chenoll E., Climent E. et al. Study of the vaginal microbiota in healthy women of reproductive age. Microorganisms. 2021; 9(5): 1069. https://dx.doi.org/10.3390/microorganisms9051069.
  9. Shen J., Sun H., Chu J., Gong X., Liu X. Cervicovaginal microbiota: a promising direction for prevention and treatment in cervical cancer. Infect. Agent Cancer. 2024; 19(1): 13. https://dx.doi.org/10.1186/s13027-024-00573-8.
  10. Dong M., Dong Y., Bai J., Li H., Ma X., Li B. et al. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front. Cell. Infect. Microbiol. 2023; 13:1124591. https://dx.doi.org/10.3389/fcimb.2023.1124591.
  11. France M.T., Ma B., Gajer P., Brown S., Humphrys M.S., Holm J.B. et al. VALENCIA: a nearest centroid classification method for vaginal microbial communities based on composition. Microbiome. 2020; 8(1): 166. https://dx.doi.org/10.1186/s40168-020-00934-6.
  12. Anahtar M.N., Byrne E.H., Doherty K.E., Bowman B.A., Yamamoto H.S., Soumillon M. et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015; 42(5): 965-76. https://dx.doi.org/10.1016/j.immuni.2015.04.019
  13. Chen C., Song X., Wei W., Zhong H., Dai J., Lan Z. et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017; 8(1): 875. https://dx.doi.org/10.1038/s41467-017-00901-0.
  14. Zhang Z., Li T., Zhang D., Zong X., Bai H., Bi H. et al. Distinction between vaginal and cervical microbiota in high-risk human papilloma virus-infected women in China. BMC Microbiol. 2021; 21(1): 90. https://dx.doi.org/10.1186/s12866-021-02152-y.
  15. Wang R., Zhou G., Wu L., Huang X., Li Y., Luo B. et al. The microbial composition of lower genital tract may affect the outcome of in vitro fertilization-embryo transfer. Front. Microbiol. 2021; 12: 729744. https://dx.doi.org/10.3389/fmicb.2021.729744.
  16. Krog M.C., Hugerth L.W., Fransson E., Bashir Z., Nyboe Andersen A., Edfeldt G. et al. The healthy female microbiome across body sites: Effect of hormonal contraceptives and the menstrual cycle. Hum. Reprod. 2022; 37(7): 1525-43. https://dx.doi.org/10.1093/ humrep/deac094.
  17. Song S.D., Acharya K.D., Zhu J.E., Deveney C.M., Walther-Antonio M.R.S., Tetel M.J. et al. daily vaginal microbiota fluctuations associated with natural hormonal cycle, contraceptives, diet, and exercise. mSphere. 2020; 5(4): e00593-20. https://dx.doi.org/10.1128/mSphere.00593-20.
  18. Gajer P., Brotman R.M., Bai G., Sakamoto J., Schütte U.M., Zhong X. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 2012; 4(132): 132ra52. https://dx.doi.org/10.1126/scitranslmed.3003605.
  19. Jie Z., Chen C., Hao L., Li F., Song L., Zhang X. et al. Life history recorded in the vagino-cervical microbiome along with multiomes. Genomics Proteomics Bioinformatics. 2022; 20(2): 304-21. https://dx.doi.org/10.1016/j.gpb.2021.01.005.
  20. Zhang Z., Bai H.H., Zong X.N., Li T., Liu Z.H. [Dynamics of vaginal microbiota in women of reproductive age during the menstrual cycle]. Zhonghua Fu Chan Ke Za Zhi. 2022; 57(2): 101-9. (in Chinese). https://dx.doi.org/10.3760/cma.j.cn112141-20211031-00631.
  21. Oerlemans E., Ahannach S., Wittouck S., Dehay E., De Boeck I., Ballet N. et al. impacts of menstruation, community type, and an oral yeast probiotic on the vaginal microbiome. mSphere. 2022; 7(5): e0023922. https://dx.doi.org/10.1128/msphere.00239-22.
  22. Kim S., Seo H., Rahim M.A., Lee S., Kim Y.S., Song H.Y. Changes in the microbiome of vaginal fluid after menopause in Korean women. J. Microbiol. Biotechnol. 2021; 31(11): 1490-500. https://dx.doi.org/10.4014/jmb.2106.06022.
  23. Gliniewicz K., Schneider G.M., Ridenhour B.J., Williams C.J., Song Y., Farage M.A. et al. Comparison of the vaginal microbiomes of premenopausal and post-menopausal women. Front. Microbiol. 2019; 10: 193. https://dx.doi.org/10.3389/fmicb.2019.00193.
  24. Mitchell C.M., Ma N., Mitchell A.J., Wu M.C., Valint D.J., Proll S. et al. Association between postmenopausal vulvovaginal discomfort, vaginal microbiota, and mucosal inflammation. Am. J. Obstet. Gynecol. 2021; 225(2): 159.e1-159.e15. https://dx.doi.org/10.1016/j.ajog.2021.02.034.
  25. Shardell M., Gravitt P.E., Burke A.E., Ravel J., Brotman R.M. Association of vaginal microbiota with signs and symptoms of the genitourinary syndrome of menopause across reproductive stages. J. Gerontol. A. Biol. Sci. Med. Sci. 2021; 76(9): 1542-50. https://dx.doi.org/10.1093/gerona/glab120.
  26. Mitchell C.M., Srinivasan S., Ma N., Reed S.D., Wu M.C., Hoffman N.G. et al. bacterial communities associated with abnormal nugent score in postmenopausal versus premenopausal women. J. Infect. Dis. 2021; 223(12): 2048-52. https://dx.doi.org/10.1093/infdis/jiaa675.
  27. Xiao B., Disi A., Qin H., Mi, L., Zhang D. Correlation analysis of vaginal microbiome changes and bacterial vaginosis plus vulvovaginal candidiasis mixed vaginitis prognosis. Front. Cell Infect. Microbiol. 2022; 12: 860589. https://dx.doi.org/10.3389/fcimb.2022.860589.
  28. Zhou R., Lu J., Wang J., Xiao B. Vaginal Lactobacillus iners abundance is associated with outcome in antibiotic treatment of bacterial vaginosis and capable of inhibiting Gardnerella. Front. Cell. Infect. Microbiol. 2022; 12: 1033431. https://dx.doi.org/10.3389/fcimb.2022.1033431.
  29. Bradshaw C.S., Tabrizi S.N., Fairley C.K., Morton A.N., Rudland E., Garland S.M. The association of atopobium vaginae and gardnerella vaginalis with bacterial vaginosis and recurrence after oral metronidazole therapy. J. Infect. Dis. 2006; 194(6): 828-36. https://dx.doi.org/10.1086/506621.
  30. Ferreira C.S.T., Donders G.G., Parada C.M.G.L., Tristão A.D.R., Fernandes T., da Silva M.G. et al. Treatment failure of bacterial vaginosis is not associated with higher loads of Atopobium vaginae and Gardnerella vaginalis. J. Med. Microbiol. 2017; 66(8): 1217-24. https://dx.doi.org/10.1099/jmm.0.000561.
  31. Серов В.Н., Сухих Г.Т., Прилепская В.Н., Радзинский В.Е., ред. Руководство по амбулаторно-поликлинической помощи в акушерстве и гинекологии. 3-е изд. М.: ГЭОТАР-Медиа; 2018. 1136 с. [Serov V.N., Sukhikh G.T., Prilepskaya V.N., Radzinsky V.E., ed. Guide of outpatient care in obstetrics and gynecology. 3rd ed. Moscow: GEOTAR-Media; 2018. 1136 p. (in Russian)].
  32. Witkin S.S., Mendes-Soares H., Linhares I.M., Jayaram A., Ledger W.J., Forney L.J. Influence of vaginal bacteria and D- and L-lactic acid isomers on vaginal extracellular matrix metalloproteinase inducer: implications for protection against upper genital tract infections. mBio. 2013; 4(4): e00460-13. https://dx.doi.org/10.1128/mBio.00460-13.
  33. Shen J., Sun H., Chu J., Gong X., Liu X. Cervicovaginal microbiota: a promising direction for prevention and treatment in cervical cancer. Infect. Agent Cancer. 2024; 19(1): 13. https://dx.doi.org/10.1186/s13027-024-00573-8.
  34. Zheng N., Guo R., Wang J., Zhou W., Ling Z. Contribution of Lactobacillus iners to vaginal health and diseases: a systematic review. Front. Cell. Infect. Microbiol. 2021; 11: 792787. https://dx.doi.org/10.3389/fcimb.2021.792787.
  35. Ragaliauskas T., Plečkaitytė M., Jankunec M., Labanauskas L., Baranauskiene L., Valincius G. Inerolysin and vaginolysin, the cytolysins implicated in vaginal dysbiosis, differently impair molecular integrity of phospholipid membranes. Sci. Rep. 2019; 9(1): 10606. https://dx.doi.org/10.1038/s41598-019-47043-5.
  36. Pendharkar S., Skafte-Holm A., Simsek G., Haahr T. Lactobacilli and their probiotic effects in the vagina of reproductive age women. Microorganisms. 2023; 11(3): 636. https://dx.doi.org/10.3390/microorganisms11030636.
  37. Salinas A.M., Osorio V.G., Pacha-Herrera D., Vivanco J.S., Trueba A.F., Machado A. Vaginal microbiota evaluation and prevalence of key pathogens in ecuadorian women: an epidemiologic analysis. Sci. Rep. 2020; 10(1): 18358. https://dx.doi.org/10.1038/s41598-020-74655-z.
  38. Trifanescu O.G., Trifanescu R.A., Mitrica R.I., Bran D.M., Serbanescu G.L., Valcauan L. et al. The female reproductive tract microbiome and cancerogenesis: a review story of bacteria, hormones, and disease. Diagnostics (Basel). 2023; 13(5): 877. https://dx.doi.org/10.3390/diagnostics13050877.
  39. Pacha-Herrera D., Erazo-Garcia M.P., Cueva D.F., Orellana M., Borja-Serrano P., Arboleda C. et al. A. Clustering analysis of the multi-microbial consortium by Lactobacillus species against vaginal dysbiosis among Ecuadorian women. Front. Cell. Infect. Microbiol. 2022; 12: 863208. https://dx.doi.org/10.3389/fcimb.2022.863208.
  40. Castanheira C.P., Sallas M.L., Nunes R.A.L., Lorenzi N.P.C., Termini L. Microbiome and cervical cancer. Pathobiology. 2021; 88(2): 187-97. https://dx.doi.org/10.1159/000511477.
  41. Кира Е.Ф., Рыбальченко О.В., Орлова О.Г., Коршакова Н.Ю. Изучение активности молочной кислоты in vitro и ее значение для клинической практики в лечении инфекций влагалища. Акушерство и гинекология. 2017; 11: 84-91. [Kira E.F., Rybalchenko O.V., Orlova O.G., Korshakova N.Yu. Investigation of the in vitro activity of lactic acid and its value for clinical practice in the treatment of vaginal infections. Obstetrics and Gynecology. 2017; (11): 84-91. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.11.84-91.
  42. Scillato M., Spitale A., Mongelli G., Privitera G.F., Mangano K., Cianci A. et al. Antimicrobial properties of Lactobacillus cell-free supernatants against multidrug-resistant urogenital pathogens. Microbiologyopen. 2021; 10(2): e1173. https://dx.doi.org/10.1002/mbo3.1173.
  43. Avitabile E., Menotti L., Giordani B., Croatti V., Parolin C., Vitali B. Vaginal Lactobacilli supernatants protect from herpes simplex virus type 1 infection in cell culture models. Int. J. Mol. Sci. 2024; 25(5): 2492. https://dx.doi.org/10.3390/ijms25052492.
  44. Tamarelle J., Thiébaut A.C.M., de Barbeyrac B., Bébéar C., Ravel J., Delarocque-Astagneau E. The vaginal microbiota and its association with human papilloma-virus, Chlamydia trachomatis, Neisseria gonorrhoeae and Mycoplasma genitalium infections: a systematic review and meta-analysis. Clin. Microbiol. Infect. 2019; 25(1): 35-47. https://dx.doi.org/10.1016/j.cmi.2018.04.019.
  45. Łaniewski P., Ilhan Z.E., Herbst-Kralovetz M.M. The microbiome and gynaecological cancer development, prevention and therapy. Nat. Rev. Urol. 2020; 17(4): 232-50. https://dx.doi.org/10.1038/s41585-020-0286-z.
  46. Wu L.Y., Yang T.H., Ou Y.C., Lin H. The role of probiotics in women's health: An update narrative review. Taiwan J. Obstet. Gynecol. 2024; 63(1): 29-36. https://dx.doi.org/10.1016/j.tjog.2023.09.018.
  47. Rodríguez-Arias R.J., Guachi-Álvarez B.O., Montalvo-Vivero D.E., Machado A. Lactobacilli displacement and Candida albicans inhibition on initial adhesion assays: a probiotic analysis. BMC Res. Notes. 2022; 15(1): 239. https://dx.doi.org/10.1186/s13104-022-06114-z.
  48. Atassi F., Pho Viet Ahn D.L., Lievin-Le Moal V. Diverse expression of antimicrobial activities against bacterial vaginosis and urinary tract infection pathogens by cervicovaginal microbiota strains of Lactobacillus gasseri and Lactobacillus crispatus. Front. Microbiol. 2019; 10: 2900. https://dx.doi.org/10.3389/fmicb.2019.02900.
  49. Kudela E., Liskova A., Samec M., Koklesova L., Holubekova V., Rokos T. et al. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer. EPMA J. 2021; 12(2): 199-220. https://dx.doi.org/10.1007/s13167-021-00244-3.
  50. Ntuli L., Mtshali A., Mzobe G., Liebenberg L.J., Ngcapu S. Role of immunity and vaginal microbiome in clearance and persistence of human papillomavirus infection. Front. Cell. Infect. Microbiol. 2022; 12: 927131. https://dx.doi.org/10.3389/fcimb.2022.927131.
  51. Chee W.J.Y., Chew S.Y., Than L.T.L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell. Fact. 2020; 19(1): 203. https://dx.doi.org/10.1186/s12934-020-01464-4.
  52. Shannon B., Yi T.J., Perusini S., Gajer P., Ma B., Humphrys M.S. et al. Association of HPV infection and clearance with cervicovaginal immunology and the vaginal microbiota. Mucosal. Immunol. 2017; 10(5): 1310-9. https://dx.doi.org/10.1038/mi.2016.129.
  53. Wahid M., Dar S.A., Jawed A., Mandal R.K., Akhter N., Khan S. et al. Microbes in gynecologic cancers: Causes or consequences and therapeutic potential. Semin. Cancer Biol. 2022; 86(Pt 2): 1179-89. https://dx.doi.org/10.1016/j.semcancer.2021.07.013.
  54. Gao Q., Fan T., Luo S., Zheng J., Zhang L., Cao L. et al. Lactobacillus gasseri LGV03 isolated from the cervico-vagina of HPV-cleared women modulates epithe-lial innate immune responses and suppresses the growth of HPV-positive human cervical cancer cells. Transl. Oncol. 2023; 35: 101714. https://dx.doi.org/10.1016/j.tranon.2023.101714.
  55. Wang K.D., Xu D.J., Wang B.Y., Yan D.H., Lv Z., Su J.R. Inhibitory effect of vaginal lactobacillus supernatants on cervical cancer cells. Probiotics Antimicrob. Proteins. 2018; 10(2): 236-42. https://dx.doi.org/10.1007/s12602-017-9339-x.
  56. Chen X., Lu Y., Chen T., Li R. The female vaginal microbiome in health and bac-terial vaginosis. Front. Cell. Infect. Microbiol. 2021; 11: 631972. https://dx.doi.org/10.3389/fcimb.2021.631972.
  57. Condic M., Neidhöfer C., Ralser D.J., Wetzig N., Thiele R., Sieber M. et al. Analysis of the cervical microbiome in women from the German national cervical cancer screening program. J. Cancer Res. Clin. Oncol. 2023; 149(9): 6489-500. https://dx.doi.org/10.1007/s00432-023-04599-0.
  58. Amabebe E., Anumba D.O.C. The vaginal microenvironment: The physiologic role of Lactobacilli. Front. Med. 2018; 5: 181. https://dx.doi.org/10.3389/fmed.2018.00181.
  59. Wang C., Fan A., Li H., Yan Y., Qi W., Wang Y. et al. Vaginal bacterial profiles of aerobic vaginitis: A case-control study. Diagn. Microbiol. Infect. Dis. 2020; 96(4): 114981. https://dx.doi.org/10.1016/j.diagmicrobio.2019.114981.
  60. Brusselaers N., Shrestha S., van de Wijgert J., Verstraelen H. Vaginal dysbiosis and the risk of human papillomavirus and cervical cancer: systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019; 221(1): 9-18.e8. https://dx.doi.org/10.1016/j.ajog.2018.12.011.
  61. Srinivasan S., Morgan M.T., Fiedler T.L., Djukovic D., Hoffman N.G., Raftery D. et al. Metabolic signatures of bacterial vaginosis. mBio. 2015; 6(2): e00204-e00215. https://dx.doi.org/10.1128/mBio.00204-15.
  62. Borgogna J.C., Shardell M.D., Santori E.K., Nelson T.M., Rath J.M., Glover E.D. et al. The vaginal metabolome and microbiota of cervical HPV-positive and HPV-negative women: A cross-sectional analysis. BJOG. 2020; 127(2): 182-92. https://dx.doi.org/10.1111/1471-0528.15981.
  63. Liu L., Chen Y., Chen J.L., Xu H.J., Zhan H.Y., Chen Z. et al. Integrated meta-genomics and metabolomics analysis of third-trimester pregnant women with premature membrane rupture: a pilot study. Ann. Transl. Med. 2021; 9(23): 1724. https://dx.doi.org/10.21037/atm-21-5539.
  64. Gajer P., Brotman R.M., Bai G., Sakamoto J., Schütte U.M., Zhong X. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 2012; 4(132): 132ra52. https://dx.doi.org/10.1126/scitranslmed.3003605.
  65. Lin X., Zheng W., Zhao X., Zeng M., Li S., Peng S. et al. Microbiome in gyne-cologic malignancies: a bibliometric analysis from 2012 to 2022. Transl. Cancer Res. 2024; 13(4): 1980-96. https://dx.doi.org/10.21037/tcr-23-1769.
  66. Zevin A.S., Xie I.Y., Birse K., Arnold K., Romas L., Westmacott G. et al. Microbiome composition and function drives wound-healing impairment in the female genital tract. PLoS Pathog. 2016; 12(9): e1005889. https://dx.doi.org/10.1371/journal.ppat.1005889.
  67. Wu M., Li H., Yu H., Yan Y., Wang C., Teng F. et al. Disturbances of vaginal microbiome composition in human papillomavirus infection and cervical carcinogenesis: a qualitative systematic review. Front. Oncol. 2022; 12: 941741. https://dx.doi.org/10.3389/fonc.2022.941741.
  68. Bosch F.X., Lorincz A., Muñoz N., Meijer C.J., Shah K.V. The causal relation between human papillomavirus and cervical cancer. J. Clin. Pathol. 2002; 55(4): 244-65. https://dx.doi.org/10.1136/jcp.55.4.244.
  69. Chen Y., Qiu X., Wang W., Li D., Wu A., Hong Z. et al. Human papillomavirus infection and cervical intraepithelial neoplasia progression are associated with increased vaginal microbiome diversity in a Chinese cohort. BMC Infect. Dis. 2020; 20(1): 629. https://dx.doi.org/10.1186/s12879-020-05324-9.
  70. Mortaki D., Gkegkes I.D., Psomiadou V., Blontzos N., Prodromidou A., Lefkopoulos F. et al. Vaginal microbiota and human papillomavirus: a systematic review. J. Turk. Ger. Gynecol. Assoc. 2020; 21(3): 193-200. https://dx.doi.org/10.4274/jtgga.galenos.2019.2019.0051.
  71. Javadi K., Ferdosi-Shahandashti E., Rajabnia M., Khaledi M. Vaginal microbiota and gynecological cancers: a complex and evolving relationship. Infect. Agent Cancer. 2024; 19(1): 27. https://dx.doi.org/10.1186/s13027-024-00590-7.
  72. Norenhag J., Du J., Olovsson M., Verstraelen H., Engstrand L., Brusselaers N. The vaginal microbiota, human papillomavirus and cervical dysplasia: a systematic review and network meta-analysis. BJOG. 2020; 127(2): 171-80. https://dx.doi.org/10.1111/1471-0528.15854.
  73. Mitra A., MacIntyre D.A., Lee Y.S., Smith A., Marchesi J.R., Lehne B. et al. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci. Rep. 2015; 5: 16865. https://dx.doi.org/10.1038/srep16865.
  74. Sun L., Li L., Xu W., Ma C. The immunomodulation role of vaginal microenvi-ronment on human papillomavirus infection. Galen Med. J. 2023; 12: 1-7. https://dx.doi.org/10.31661/gmj.v12i0.2991.
  75. Usyk M., Zolnik C.P., Castle P.E., Porras C., Herrero R., Gradissimo A. et al.; Costa Rica HPV Vaccine Trial (CVT) Group. Cervicovaginal microbiome and natural history of HPV in a longitudinal study. PLoS Pathog. 2020; 16(3): e1008376. https://dx.doi.org/10.1371/journal.ppat.1008376.
  76. Zhou Z., Feng Y., Xie L., Ma S., Cai Z., Ma Y. Alterations in gut and genital microbiota associated with gynecological diseases: a systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2024; 22(1): 13. https://dx.doi.org/10.1186/s12958-024-01184-z.
  77. Audirac-Chalifour A., Torres-Poveda K., Bahena-Román M., Téllez-Sosa J., Martínez-Barnetche J., Cortina-Ceballos B. et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLoS One. 2016; 11(4): e0153274. https://dx.doi.org/10.1371/journal.pone.0153274.
  78. Hamar B., Teutsch B., Hoffmann E., Hegyi P., Váradi A., Nyirády P. et al. Trichomonas vaginalis infection is associated with increased risk of cervical carcinogenesis: A systematic review and meta-analysis of 470 000 patients. Int. J. Gynaecol. Obstet. 2023; 163(1): 31-43. https://dx.doi.org/10.1002/ijgo.14763.
  79. Torcia M.G. Interplay among vaginal microbiome, immune response and sexually transmitted viral infections. Int. J. Mol. Sci. 2019; 20(2): 266. https://dx.doi.org/10.3390/ijms20020266.
  80. Trifanescu O.G., Trifanescu R.A., Mitrica R.I., Bran D.M., Serbanescu G.L., Valcauan L. et al. The female reproductive tract microbiome and cancerogenesis: a review story of bacteria, hormones, and disease. Diagnostics (Basel). 2023; 13(5): 877. https://dx.doi.org/10.3390/diagnostics13050877.
  81. Кира Е.Ф., Халтурина Ю.В. Современные терапевтические возможности лечения бактериального вагиноза. Журнал акушерства и женских болезней. 2020; 69(3): 39-45. [Kira E.F., Khalturina Yu.V. Modern therapeutic options in the treatment of bacterial vaginosis. Journal of Obstetrics and Women’s Diseases. 2020; 69(3): 39-45. (in Russian)]. https://doi.org/10.17816/JOWD69339-45.
  82. Hubert M. Fixkombinationen verbessern die Compliance [Fixed combination improves compliance]. MMW Fortschr. Med. 2015; 157(6): 70. (in German). https://dx.doi.org/10.1007/s15006-015-2928-2.
  83. Бадикова Н.С., Кира Е.Ф. Эффективная и безопасная монотерапия интравагинальными суппозиториями Нео-Пенотран Форте и Вагинорм С. Медицинский вестник Юга России. 2014; 2: 30-3. [Badikova N.S., Kira E.F. Effective and safe monotherapy with intravaginal Neo-Penotran Forte and Vaginorm C suppositories. Medical Herald of the South of Russia. 2014; (2): 30-3. (in Russian)]. https://dx.doi.org/10.21886/2219- 8075-2014-2-30-33.
  84. Аполихина И.А., Саидова А.С., Баранов И.И. Применение нового комбинированного препарата для местного применения (метронидазол + хлорамфеникол + натамицин + гидрокортизона ацетат) для лечения вагинитов различной этиологии. Акушерство и гинекология. 2020; 7: 143-50. [Apolikhina I.A., Saidova A.S., Kulikov I.A., Baranov I.I. The use of a new topical combination drug (metronidazole + chloramphenicol + natamycin + hydrocortisone acetate) for the treatment of vaginitides of various etiologies. Obstetrics and Gynecology. 2020; (7): 143-50 (in Russian)]. https://dx.doi.org/10.18565/aig.2020.7.143-150.
  85. Резолюция междисциплинарного совета экспертов, посвященного проблеме диагностики и лечения вагинитов различной этиологии в условиях реальной клинической практики «Применение нового комбинированного топического препарата для лечения вагинитов различной этиологии – «ОРИГИНАЛ». Акушерство и гинекология. 2020; 11: 243-6. [Resolution of the Interdisciplinary Council of Experts devoted to the problem of diagnosis and treatment of vaginitis of various etiologies in real clinical practice. Use of a new combined topical drug for the treatment of vaginitis of various etiologies. Educational project "ORIGINAL". Obstetrics and Gynecology. 2020; (11): 243-6 (in Russian)]. https://dx.doi.org/10.18565/aig.2020.11.243-246.
  86. Кира Е.Ф., Припутневич Т.В., Муравьева В.В., Халтурина Ю.В. Трансплантация вагинальной микробиоты. Акушерство и гинекология. 2023; 10: 39-46. [Kira E.F., Priputnevich T.V., Muravieva V.V., Khalturina Yu.V. Vaginal microbiota transplantation. Obstetrics and Gynecology. 2023; (10): 39-46 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.142.
  87. Bjornson-Hooper Z.B., Fragiadakis G.K., Spitzer M.H., Chen H., Madhireddy D., Hu K. et al. A comprehensive atlas of immunological differences between humans, mice, and non-human primates. Front. Immunol. 2022; 13: 67015. https://dx.doi.org/10.3389/fimmu.2022.867015.
  88. Mahajan G., Doherty E., To T., Sutherland A., Grant J., Junaid A. et al. Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome. 2022; 10(1): 201. https://dx.doi.org/10.1186/s40168-022-01400-1.

Received 13.02.2025

Accepted 26.02.2025

About the Authors

Evgeny F. Kira, Dr. Med. Sci., Professor, Merited Scholar of the Russian Federation, Honored Doctor of the Russian Federation, Academician of the Russian Academy of Natural Sciences, Head of the Department of Women’s Diseases and Reproductive Health of the Institute of Advanced Medical Studies, N.I. Pirogov National Medical and Surgical Center, Ministry of Health of Russia, 105203, Russia, Moscow, Nizhnyaya Pervomaiskaya str., 70, +7(985)188-87-86, profkira33@gmail.com,
https://orcid.org/0000-0002-1376-7361
Tatiana V. Priputnevich, Corresponding Member of the Russian Academy of Sciences, Dr. Med. Sci., Associate Professor, Head of the Institute of Microbiology, Antimicrobial Therapy and Epidemiology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Oparina str., 4; Chief Freelance Specialist in Medical Microbiology of the Ministry of Health of Russia, priput1@gmail.com,
https://orcid.org/0000-0002-4126-9730
Elizaveta E. Kira, third-year student, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 119991, Russia, Moscow, Trubetskaya str., 8-2, +7(916)948-70-91, kiraliza2309@gmail.com

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.