Asthenozoospermia and proteomic factors regulating sperm motility

Shatylko T.V., Gamidov S.I., Frankevich V.E., Starodubtseva N.L., Gasanov N.G., Tambiev A.Kh.

1 Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia; 2 I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russia
Asthenozoospermia is reduced sperm motility that is often found when testing semen from men of infertile couples. Asthenozoospermia can be caused by various diseases and lifestyle factors, but the specific pathogenetic mechanisms of impaired sperm motility remain not fully investigated. To date, data have been accumulated in proteomic studies, which indicate that numerous protein molecules that realize various biological functions are regulators of the motility of male germ cells. Further study of proteomic mobility regulators will more accurately identify the etiology of asthenozoospermia, objectify its diagnosis, and, in the future, develop targeted therapies for male infertility, which are aimed at increasing the number of motile spermatozoa in the ejaculate.

Keywords

asthenozoospermia
ejaculate proteome
male infertility
seminal plasma

References

  1. Curi S.M., Ariagno J.I., Chenlo P.H., Mendeluk G.R., Pugliese M.N., Sardi Segovia L.M. et al. Asthenozoospermia: analysis of a large population. Arch. Androl. 2003; 49(5): 343-9. https://dx.doi.org/10.1080/01485010390219656.
  2. Martínez-Heredia J., De Mateo S., Vidal-Taboada J.M., Ballescà J.L., Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum. Reprod. 2008; 23(4): 783-91. https://dx.doi.org/10.1093/humrep/den024.
  3. Zhao C., Huo R., Wang F.Q., Lin M., Zhou Z.M., Sha J.H. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil. Steril. 2007; 87(2): 436-8. https://dx.doi.org/10.1016/j.fertnstert.2006.06.057.
  4. Capkova J., Elzeinová F., Novák P. Increased expression of secretory actin-binding protein on human spermatozoa is associated with poor semen quality. Hum. Reprod. 2007; 22(5): 1396-404. https://dx.doi.org/10.1093/humrep/del511.
  5. Baker M.A., Reeves G., Hetherington L., Müller J., Baur I., Aitken R.J. Identification of gene products present in Triton X-100 soluble and insoluble fractions of human spermatozoa lysates using LC-MS/MS analysis. Proteomics Clin. Appl. 2007; 1(5): 524-32. https://dx.doi.org/10.1002/prca.200601013.
  6. Lefievre L., Chen Y., Conner S.J., Scott J.L., Publicover S.J., Ford W.C. et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007; 7(17): 3066-84. https://dx.doi.org/10.1002/pmic.200700254.
  7. Glander H.J., Kratzsch J., Weisbrich C., Birkenmeier G. Insulin-like growth factor-I and alpha 2-macroglobulin in seminal plasma correlate with semen quality. Hum. Reprod. 1996; 11(11): 2454-60. https://dx.doi.org/10.1093/oxfordjournals.humrep.a019136.
  8. Razusta J., Valdivia A., Fernandez D., Agirregoitia E., Ochoa C., Casis L. Enkephalin-degrading enzymes in normal and subfertile human semen. J. Androl. 2004; 25(5): 733-9. https://dx.doi.org/10.1002/j.1939-4640.2004.tb02848.x.
  9. Wennemuth G., Schiemann P.J., Krause W., Gressner A.M., Aumüller G. Influence of fibronectin on the motility of human spermatozoa. Int. J. Androl. 1997; 20(1): 10-6. https://dx.doi.org/10.1046/j.1365-2605.1997.00005.x.
  10. Starita-Geribaldi M., Poggioli S., Zucchini M., Garin J., Chevallier D., Fnichel P. et al. Mapping of seminal plasma proteins by two-dimensional gel electrophoresis in men with normal and impaired spermatogenesis. Mol. Hum. Reprod. 2001; 7(8): 715-22. https://dx.doi.org/10.1093/molehr/7.8.715.
  11. Starita-Geribaldi M., Roux F., Garin J., Chevallier D., Fénichel P., Pointis G. Development of narrow immobilized pH gradients covering one pH unit for human seminal plasma proteomic analysis. Proteomics. 2003; 3(8): 1611-9. https://dx.doi.org/10.1002/pmic.200300493.
  12. Pilch B., Mann M. Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol. 2006; 7(5): R40. https://dx.doi.org/10.1186/gb-2006-7-5-r40.
  13. Li R., Guo Y., Han B.M., Yan X., Utleg A.G., Li W. et al. Proteomics cataloging analysis of human expressed prostatic secretions reveals rich source of biomarker candidates. Proteomics Clin. Appl. 2008; 2(4): 543-55. https://dx.doi.org/10.1002/prca.200780159.
  14. Agarwal A., Baskaran S., Panner Selvam M.K., Barbăroșie C., Master K. Unraveling the footsteps of proteomics in male reproductive research: a scientometric approach. Antioxid. Redox Signal. 2020; 32(8): 536-49. https://dx.doi.org/10.1089/ars.2019.7945.
  15. Wang J., Wang J., Zhang H.R., Shi H.J., Ma D., Zhao H.X. et al. Proteomic analysis of seminal plasma from asthenozoospermia patients reveals proteins that affect oxidative stress responses and semen quality. Asian J. Androl. 2009; 11(4): 484-91. https://dx.doi.org/10.1038/aja.2009.26.
  16. Torregrosa N., Dominguez-Fandos D., Camejo M.I., Shirley C.R., Meistrich M.L., Ballesca J.L., Oliva R. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum. Reprod. 2006; 21(8): 2084-9. https://dx.doi.org/10.1093/humrep/del114.
  17. Martin-Hidalgo D., Serrano R., Zaragoza C., Garcia-Marin L.J., Bragado M.J. Human sperm phosphoproteome reveals differential phosphoprotein signatures that regulate human sperm motility. J. Proteomics. 2020; 215: 103654. https://dx.doi.org/10.1016/j.jprot.2020.103654.
  18. Agarwal A., Bertolla R.P., Samanta L. Sperm proteomics: potential impact on male infertility treatment. Expert Rev. Proteomics. 2016; 13(3): 285-96. https://dx.doi.org/10.1586/14789450.2016.1151357.
  19. Huttemann M., Jaradat S., Grossman L.I. Cytochrome c oxidase of mammals contains a testes-specific isoform of subunit VIb–the counterpart to testes-specific cytochrome c? Mol. Reprod. Dev. 2003; 66(1): 8-16. https://dx.doi.org/10.1002/mrd.10327.
  20. Cardullo R.A., Baltz J.M. Metabolic regulation in mammalian sperm: mitochondrial volume determines sperm length and flagellar beat frequency. Cell Motil. Cytoskeleton. 1991; 19(3): 180-8.
  21. Coughlin E.M., Christensen E., Kunz P.L., Krishnamoorthy K.S., Walker V., Dennis N.R. et al. Molecular analysis and prenatal diagnosis of human fumarase deficiency. Mol. Genet. Metab. 1998; 63(4): 254-62. https://dx.doi.org/10.1002/cm.970190306.
  22. Guo Y., Jiang W., Yu W., Niu X., Liu F., Zhou T. et al. Proteomics analysis of asthenozoospermia and identification of glucose-6-phosphate isomerase as an important enzyme for sperm motility. J. Proteomics. 2019; 208: 103478. https://dx.doi.org/10.1016/j.jprot.2019.103478.
  23. Wu Y., Yuan Y., Chen L., Wang M., Yang Y., Wang Y. et al. Quantitative proteomic analysis of human seminal plasma from normozoospermic and asthenozoospermic individuals. Biomed. Res. Int. 2019; 2019: 2735038. https://dx.doi.org/10.1155/2019/2735038.
  24. Moscatelli N., Lunetti P., Braccia C., Armirotti A., Pisanello F., De Vittorio M. et al. Comparative proteomic analysis of proteins involved in bioenergetics pathways associated with human sperm motility. Int. J. Mol. Sci. 2019; 20(12). pii: E3000. https://dx.doi.org/10.3390/ijms20123000.
  25. Machesky L.M., Insall R.H. Signaling to actin dynamics. J. Cell Biol. 1999; 146(2): 267-72. https://dx.doi.org/10.1083/jcb.146.2.267.
  26. Seligman J., Zipser Y., Kosower N.S. Tyrosine phosphorylation, thiol status, and protein tyrosine phosphatase in rat epididymal spermatozoa. Biol. Reprod. 2004;71(3):1009-15. https://dx.doi.org/10.1095/biolreprod.104.028035.
  27. Caputo E., Carratore V., Ciullo M., Tiberio C., Mani J.C., Piatier-Tonneau D. et al. Biosynthesis and immunobiochemical characterization of p17/GCDFP-15. A glycoprotein from seminal vesicles and from breast tumors, in HeLa cells and in Pichia pastoris yeast. Eur. J. Biochem. 1999; 265(2): 664-70. https://dx.doi.org/10.1046/j.1432-1327.1999.00758.x.
  28. Yoshida K., Yamasaki T., Yoshiike M., Takano S., Sato I., Iwamoto T. Quantification of seminal plasma motility inhibitor/semenogelin in human seminal plasma. J. Androl. 2003; 24(6): 878-84.
  29. Bergamo P., Balestrieri M., Cammarota G., Guardiola J., Abrescia P. CD4-mediated anchoring of the seminal antigen gp17 onto the spermatozoon surface. Hum. Immunol. 1997; 58(1): 30-41. https://dx.doi.org/10.1002/j.1939-4640.2003.tb03139.x.
  30. Caputo E., Manco G., Mandrich L., Guardiola J. A novel aspartyl proteinase from apocrine epithelia and breast tumors. J. Biol. Chem. 2000; 275(11): 7935-41. https://dx.doi.org/10.1074/jbc.275.11.7935.
  31. Cryns K., Shamir A., Van Acker N., Levi I., Daneels G., Goris I. et al. IMPA1 is essential for embryonic development and lithium-like pilocarpine sensitivity. Neuropsychopharmacology. 2008; 33(3): 674-84. https://dx.doi.org/10.1038/sj.npp.1301431.
  32. Chauvin T.R., Griswold M.D. Characterization of the expression and regulation of genes necessary for myo-inositol biosynthesis and transport in the seminiferous epithelium. Biol. Reprod. 2004; 70(3): 744-51. https://dx.doi.org/10.1095/biolreprod.103.022731.
  33. Liu D.Y., Clarke G.N., Baker H.W. Hyper-osmotic condition enhances protein tyrosine phosphorylation and zona pellucida binding capacity of human sperm. Hum. Reprod. 2006; 21(3): 745-52. https://dx.doi.org/10.1093/humrep/dei364.
  34. Lefièvre L., Chen Y., Conner S.J., Scott J.L., Publicover S.J., Ford W.C. et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007; 7(17): 3066-84. https://dx.doi.org/10.1002/pmic.200700254.
  35. Govin J., Caron C., Escoffier E., Ferro M., Kuhn L., Rousseaux S. et al. Post-meiotic shifts in HSPA2/HSP70.2 chaperone activity during mouse spermatogenesis. J. Biol. Chem. 2006; 281(49): 37888-92. https://dx.doi.org/10.1074/jbc.M608147200.
  36. Cedenho A.P., Lima S.B., Cenedeze M.A., Spaine D.M., Ortiz V., Oehninger S. Oligozoospermia and heat-shock protein expression in ejaculated spermatozoa. Hum. Reprod. 2006; 21(7): 1791-4. https://dx.doi.org/10.1093/humrep/del055.
  37. Huszar G., Ozkavukcu S., Jakab A., Celik-Ozenci C., Sati G.L., Cayli S. Hyaluronic acid binding ability of human sperm reflects cellular maturity and fertilizing potential: selection of sperm for intracytoplasmic sperm injection. Curr. Opin. Obstet. Gynecol. 2006; 18(3): 260-7. https://dx.doi.org/10.1097/01.gco.0000193018.98061.2f.
  38. Saraswat M., Joenväärä S., Jain T., Tomar A.K., Sinha A., Singh S. et al. Human spermatozoa quantitative proteomic signature classifies normo- and asthenozoospermia. Mol. Cell. Proteomics. 2017; 16(1): 57-72. https://dx.doi.org/10.1074/mcp.M116.061028.
  39. Hamer G., Gell K., Kouznetsova A., Novak I., Benavente R., Höög C. Characterization of a novel meiosis-specific protein within the central element of the synaptonemal complex. J. Cell Sci. 2006; 119(19): 4025-32. https://dx.doi.org/10.1242/jcs.03182.
  40. Gonzales G.F. Function of seminal vesicles and their role on male fertility. Asian J. Androl. 2001; 3(4): 251-8.
  41. Kirchhoff C. Molecular characterization of epididymal proteins. Rev. Reprod. 1998; 3: 86-95. https://dx.doi.org/10.1530/ror.0.0030086.
  42. Murdica V., Cermisoni G.C., Zarovni N., Salonia A., Viganò P., Vago R. roteomic analysis reveals the negative modulator of sperm function glycodelin as over-represented in semen exosomes isolated from asthenozoospermic patients. Hum. Reprod. 2019; 34(8): 1416-27. https://dx.doi.org/10.1093/humrep/dez114.
  43. Burden H.P., Holmes C.H., Persad R., Whittington K. Prostasomes–their effects on human male reproduction and fertility. Hum. Reprod. Update. 2006; 12(3): 283-92. https://dx.doi.org/10.1093/humupd/dmi052.
  44. Arienti G., Polci A., Carlini E., Palmerini C.A. Transfer of CD26/dipeptidyl peptidase IV (E.C. 3.5.4.4) from prostasomes to sperm. FEBS Lett. 1997; 410(2-3): 343-6. https://dx.doi.org/10.1016/S0014-5793(97)00655-8.
  45. Carlsson L., Ronquist G., Nilsson B.O., Larsson A. Dominant prostasome immunogens for sperm-agglutinating autoantibodies of infertile men. J. Androl. 2004; 25(5): 699-705.
  46. Ibrahim N.M., Gilbert G.R., Loseth K.L., Crabo B.G. Correlation between Clusterin-Positive Spermatozoa determined by flow cytometry in bull semen and fertility. J Androl. 2000; 21(6): 887-94. https://dx.doi.org/10.1002/j.1939-4640.2000.tb03419.x.
  47. Tremellen K. Oxidative stress and male infertility--a clinical perspective. Hum. Reprod. Update. 2008; 14(3): 243-58. https://dx.doi.org/10.1093/humupd/dmn004.
  48. Agarwal A., Sharma R.K., Nallella K.P., Thomas A.J. Jr, Alvarez J.G., Sikka S.C. Reactive oxygen species as an independent marker of male factor infertility. Fertil. Steril. 2006; 86(4): 878-85. https://dx.doi.org/10.1016/j.fertnstert.2006.02.111.
  49. Potts J.M., Pasqualotto F.F. Seminal oxidative stress in patients with chronic prostatitis. Andrologia. 2003; 35(5): 304-8.
  50. Tsuji S., Uehori J., Matsumoto M., Suzuki Y., Matsuhisa A., Toyoshima K. et al. Human intelectin is a novel soluble lectin that recognizes galactofuranose in carbohydrate chains of bacterial cell wall. J. Biol. Chem. 2001; 276(26): 23456-63. https://dx.doi.org/ 10.1074/jbc.M103162200.
  51. Gu N., Wang J., Di Z., Liu Z., Jia X., Yan Y. et al. The effects of intelectin-1 on antioxidant and angiogenesis in HUVECs exposed to oxygen glucose deprivation. Front. Neurol. 2019; 10: 383. https://dx.doi.org/10.3389/fneur.2019.00383.
  52. Wu D., Cederbaum A.I. Alcohol, oxidative stress, and free radical damage. Alcohol Res. Health. 2003; 27(4): 277-84.
  53. Telisman S., Colak B., Pizent A., Jurasović J., Cvitković P. Reproductive toxicity of low-level lead exposure in men. Environ. Res. 2007; 105(2): 256-66. https://dx.doi.org/10.1016/j.envres.2007.05.011.
  54. Ooe H., Taira T., Iguchi-Ariga S.M., Ariga H. Induction of reactive oxygen species by bisphenol A and abrogation of bisphenol A-induced cell injury by DJ-1. Toxicol. Sci. 2005; 88(1): 114-26. https://dx.doi.org/10.1093/toxsci/kfi278.
  55. Canet-Avilés R.M., Wilson M.A., Miller D.W., Ahmad R., McLendon C., Bandyopadhyay S. et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc. Natl. Acad. Sci. USA. 2004; 101(24): 9103-8. https://dx.doi.org/10.1073/pnas.0402959101.
  56. Wagenfeld A., Gromoll J., Cooper T.G. Molecular cloning and expression of rat contraception associated protein 1 (CAP1), a protein putatively involved in fertilization. Biochem. Biophys. Res. Commun. 1998; 251(2): 545-9. https://dx.doi.org/10.1006/bbrc.1998.9512.
  57. Yoshida K., Sato Y., Yoshiike M., Nozawa S., Ariga H., Iwamoto T. Immunocytochemical localization of DJ-1 in human male reproductive tissue. Mol. Reprod. Dev. 2003; 66(4): 391-7. https://dx.doi.org/10.1002/mrd.10360.
  58. Utleg A.G., Yi E.C., Xie T., Shannon P., White J.T., Goodlett D.R. et al. Proteomic analysis of human prostasomes. Prostate. 2003; 56(2): 150-61. https://dx.doi.org/10.1002/pros.10255.

Received 29.01.2020

Accepted 07.02.2020

About the Authors

Taras V. Shatylko, candidate of medical science, urologist of andrology and urology department of National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov. Tel.: +7(927)620-49-25. E-mail: dialectic.law@gmail.com
4, Oparina str., Moscow, 117997, Russian Federation.
Safar I. Gamidov, doctor of medical science, chief urologist of National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, professor of obstetrics, gynecology and perinatology department of Sechenov University. Tel.: +7(495)531-44-44, E-mail: safargamidov@yandex.ru
4, Oparina str., Moscow, 117997, Russian Federation.
Vladimir E. Frankevich, candidate of physical and technical science, chief of department of systemic biology in reproduction of National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov. Tel.: +7(495)531-44-44, E-mail: v_frankevich@oparina4.ru
4, Oparina str., Moscow, 117997, Russian Federation.
Natalia L. Starodubtseva, candidate of biological science, chief of proteomics and metabolomics laboratory in human reproduction of National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov. Tel.: +7(495)531-44-44, E-mail: n_starodubtseva@oparina4.com
4, Oparina str., Moscow, 117997, Russian Federation.
Natig G. Gasanov, urologist of andrology and urology department of National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov. Tel.: +7(495)531-44-44, E-mail: natiqhasan@gmail.com
4, Oparina str., Moscow, 117997, Russian Federation.
Alikhan Kh. Tambiev, postgraduate student at the Department Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Professional Education of the Sechenov University. Tel.: +7(915)499-69-45, E-mail: dr.tambiev@gmail.com
2-4, Bolshaya Pirogovskaya str., Moscow, 119991, Russian Federation.

For citation: Shatylko T.V., Gamidov S.I., Frankevich V.E., Starodubtseva N.L., Gasanov N.G., Tambiev A.Kh. Asthenozoospermia and proteomic factors regulating sperm motility.
Akusherstvo i Ginekologiya/ Obstetrics and gynecology. 2020; 3: 37-44. (In Russian).
https://dx.doi.org/10.18565/aig.2020.4.37-44

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.