Platelet activation by seminal plasma components in the induction of mechanisms of immunological tolerance in pregnancy

Zhukova A.S., Nikolaeva M.A., Krechetova L.V.

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia
The non-hemostatic function of platelets has been confirmed by numerous studies. Besides their participation in pathological processes, these cells play an important role in the menstrual cycle, embryo implantation and maintaining the pregnancy. Megakaryocyte derivatives contribute to leukocyte differentiation, polarization of the immune response and the induction of immunological tolerance through the secretion of soluble mediators and through direct intercellular interactions in the activation process. The activation occurs both in response to changes in hemodynamics and due to the action of factors found in the platelet microenvironment on a wide spectrum of receptors on their surface. The thorough analysis of the composition of seminal plasma revealed a wide range of components that can modulate the functional activity of platelets, namely, induction of migration, aggregation, secretion of granule contents, expression of activation markers, apoptosis. A local short-term inflammation that develops after semen plasma enters the female reproductive tract is able to determine the nature of platelet-leukocyte interactions followed by the recruitment of neutrophil granulocytes in this area, their timely elimination and migration of T-regulatory lymphocytes. Incorrect platelet activation by seminal plasma components can lead to an increase in their procoagulant potential which is associated with impaired vascularization processes, the development of microthrombi in uterine vessels and the progression of placenta-associated pregnancy complications.
Conclusion: Seminal plasma components provide regulation of molecular and cellular interactions including platelet activation involved in the preparation of the female reproductive tract for embryo implantation and the creation of a microenvironment favorable for maintaining the pregnancy.

Authors’ contributions: Zhukova A.S. – developing the concept and plan of the article, searching and analyzing the literature, summarizing the data, writing the text of the manuscript; Nikolaeva M.A. – searching and analyzing the literature, summarizing the data, editing the text of the manuscript; Krechetova L.V. – reviewing, final editing.
Conflicts of interest: The authors declare no possible conflicts of interest.
Funding: The study was conducted within the framework of the state assignment “Solving the problem of infertility in modern conditions through the development of a clinical and diagnostic model of infertile marriage and the use of innovative technologies in assisted reproduction programs” No. 22-A21-121040600410-7.
For citation: Zhukova A.S., Nikolaeva M.A., Krechetova L.V. Platelet activation by seminal plasma components in the induction of mechanisms of immunological tolerance in pregnancy.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (9): 5-11 (in Russian)
https://dx.doi.org/10.18565/aig.2023.151

Keywords

platelets
platelet-leukocyte interactions
seminal plasma
implantation
pregnancy
immunoregulation

References

  1. Dutta S., Sengupta P. Defining pregnancy phases with cytokine shift. J. Pregnancy Reprod. 2017; 1(4): 1-3. https://dx.doi.org/10.15761/JPR.1000124.
  2. Mor G., Cardenas I. The immune system in pregnancy: a unique complexity. Am. J. Reprod. Immunol. 2010; 63(6): 425-33. https://dx.doi.org/10.1111/j.1600-0897.2010.00836.x.
  3. Abu-Raya B., Michalski C., Sadarangani M., Lavoie P.M. Maternal immunological adaptation durind normal pregnancy. Front. Immunol. 2020; 11: 575197. https://dx.doi.org/10.3389/fimmu.2020.575197.
  4. Dekel N., Gnansky Y., Granot I., Racicot K., Mor G. The role of inflammation for a successful implantation. Am. J. Reprod. Immunol. 2014; 72(2): 141-7.https://dx.doi.org/10.1111/aji.12266.
  5. Bert S., Ward E.J., Nadkarni S. Neutrophils in pregnancy: new insights into innate and adaptive immune regulation. Immunology. 2021; 164(4): 665-76. https://dx.doi.org/10.1111/imm.13392.
  6. Li X., Zhou J., Fang M., Yu B. Pregnancy immune tolerance at the maternal-fetal interface. Int. Rev. Immunol. 2020; 39(6): 247-63. https://dx.doi.org/10.1080/08830185.2020.1777292.
  7. Sivarajasingam S.P., Imami N., Joh M.R. Myometrial cytokines and their role in the onset of labour. J. Endocrinol. 2016; 231(3): R101-19.https://dx.doi.org/10.1530/JOE-16-0157.
  8. Jarmund A.H., Giskeødegård G.F., Ryssdal M., Steinkjer B., Stokkeland L.M.T.,Madssen T.S. et al. Cytokine patterns in maternal serum from first trimester to term and beyond. Front. Immunol. 2021; 12: 752660. https://dx.doi.org/10.3389/fimmu.2021.752660.
  9. Ящук А.Г., Масленников А.В., Даутова Л.А., Галимов Ш.Н., Гурова З.Г., Валиева Л.К., Берг Э.А. Роль тромбоцитов в реализации репродуктивной функции у женщин. Российский вестник акушера-гинеколога. 2017; 17(4): 20-4. [Iashchuk A.G., Maslennikov A.V., Dautova L.A., Galimov Sh.N., Gurova Z.G., Valieva L.K., Berg E.A. The role of platelets in female reproductive function. Russian Bulletin of Obstetrician-Gynecologist. 2017; 17(4): 20‑4.(in Russian)]. https://dx.doi.org/10.17116/rosakush201717420-24.
  10. Жукова А.С., Ванько Л.В., Кречетова Л.В., Хорошкеева О.В., Тетруашвили Н.К. Роль тромбоцитов в формировании иммунологической толерантности при привычном выкидыше. Доктор.Ру. 2022; 21(5): 47-52. [Zhukova A.S., Vanko L.V., Krechetova L.V., Khoroshkeeva O.V., Tetruashvili N.K. The role of platelets in the formation of immunological tolerance in recurrent miscarriage. Doctor.Ru. 2022; 21(5): 47-52. (in Russian)]. https://dx.doi.org/10.31550/1727-2378-2022-21-5-47-52.
  11. Du Y., Liu X., Guo S.-W. Platelets impair natural killer cell reactivity and function in endometriosis through multiple mechanisms. Hum. Reprod. 2017; 32(4): 794-810. https://dx.doi.org/10.1093/humrep/dex014.
  12. Lisman T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 2018; 371(3): 567-76.https://dx.doi.org/10.1007/s00441-017-2727-4.
  13. Mehrpouri M., Bashash D., Mohammadi M.H., Gheydari M.E., Satlsar E.S., Hamidpour M. Co-culture of platelets with monocytes induced M2 macrophage polarization and formation of foam cells: shedding light on the crucial role of platelets in monocyte differentiation. Turk. J. Haematol. 2019; 36(2): 97-105. https://dx.doi.org/10.4274/tjh.galenos.2019.2018.0449.
  14. Song N., Pan K., Chen L., Jin K. Platelet derived vesicles enchance the TGF-beta signaling pathway of M1 macrophage. Front. Endocrinol. 2022; 13: 868893. https:/dx.doi.org/10.3389/fendo.2022.868893.
  15. Linke B., Schreiber Y., Picard-Willems B., Slattery P., Nüsing R.M., Harder S. et al. Activated platelets induce an anti-inflammatory response of monocytes/macrophages through cross-regulation of PGE2 and cytokines. Mediators Inflamm. 2017; 2017: 1463216. https://dx.doi.org/10.1155/2017/1463216.
  16. Singh M.V., Suwunnakorn S., Simpson S.R., Weber E.A., Singh V.B., Kalinski P. et al. Monocytes complexed to platelets differentiate into functionally deficient dendritic cells. J. Leukoc. Biol. 2021; 109(4): 807-20.https://dx.doi.org/10.1002/JLB.3A0620-460RR.
  17. Karolczak K., Watala C. Blood platelets as an important but underrated circulating source of TGFβ. Int. J. Mol. Sci. 2021; 22(9): 4492.https://dx.doi.org/10.3390/ijms22094492.
  18. Liu C.Y., Battaglia M., Lee S.H., Sun Q.H., Aster R.H., Visentin G.P. Platelet factor 4 differentially modulates CD4+CD25+(regula-tory) versus CD4+CD25- (nonregulatory) T cells. J. Immunol. 2005; 174(5): 2680-6. https://dx.doi.org/10.4049/jimmunol.174.5.2680.
  19. Forstner D., Maninger S., Nonn O., Guettler J., Moser G., Leitinger G.et al. Platelet-derived factors impair placental chorionic gonadotropin beta-subunit synthesis. J. Mol. Med. (Berl.). 2020; 98(2): 193-207.https://dx.doi.org/10.1007/s00109-019-01866-x.
  20. Forstner D., Guettler J., Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. Int. J. Mol. Sci. 2021; 22(19): 10732. https://dx.doi.org/10.3390/ijms221910732.
  21. Rossaint J., Thomas K., Mersmann S., Skupski J., Margraf A., Tekath T. et al. Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education. J. Exp. Med. 2021; 218(7): e20201353. https://dx.doi.org/10.1084/jem.20201353.
  22. Bódis J., Papp S., Vermes I., Sulyok E., Tamás P., Farkas B. “Platelet-associated regulatory system (PARS)” with particular reference to female reproduction. J. Ovarian Res. 2014; 7: 55. https://dx.doi.org/10.1186/1757-2215-7-55.
  23. Furukawa K., Fujiwara H., Sato Y., Zeng B-X., Fujii H., Yoshioka S. et al. Platelets are novel regulators of neovascularization and luteinization during human corpus luteum formation. Endocrinology. 2007; 148(7): 3056-64. https://dx.doi.org/10.1210/en.2006-1687.
  24. Osuga Y., Toyoshima H., Mitsuhashi N., Taketani Y. The presence of platelet-derived endothelial cell growth factor in human endometrium and its characteristic expression during the menstrual cycle and early gestational period. Hum. Reprod. 1995; 10(4): 989-93. https://dx.doi.org/10.1093/oxfordjournals.humrep.a136083.
  25. Волкова Е.Ю., Корнеева И.Е., Силантьева Е.С. Роль маточной гемодинамики в оценке рецептивности эндометрия. Проблемы репродукции. 2012; 2: 57-62. [Volkova E.Iu., Korneeva I.E., Silant’eva E.S. The role of uterine hemodynamics in the assessment of endometrial receptivity. Russian Journal of Human Reproduction. 2012; (2): 57 62. (in Russian)].
  26. Lam F.W., Vijayan K.V., Rumbaut R.E. Platelets and their interactions with other immune cells. Compr. Physiol. 2015; 5(3): 1265-80. https://dx.doi.org/10.1002/cphy.c140074.
  27. Theofilis P., Sagris M., Antonopoulos A.S., Oikonomou E., Tsioufis C., Tousoulis D. Inflammatory mediators of platelet activation: focus on atherosclerosis and COVID-19. Int. J. Mol. Sci. 2021; 22(20): 11170. https://dx.doi.org/10.3390/ijms222011170.
  28. Тагирова А.А., Субханкулова А.Ф. Репродуктивный потенциал семенной жидкости. Акушерство, гинекология и репродукция. 2023; 17(1): 138-47. [Tagirova A.A., Subkhankulova A.F. Semen reproductive potential. Obstetrics, Gynecology and Reproduction. 2023; 17(1): 138-47. (in Russian)].https://dx.doi.org/10.17749/2313-7347/ob.gyn.rep.2023.267.
  29. Schjenken J.E., Robertson S.A. The female response to seminal fluid. Physiol. Rev. 2020; 100(3): 1077-117. https://dx.doi.org/10.1152/physrev.00013.2018.
  30. England G.C.W., Russo M., Freeman S.L. The bitch uterine response to semen deposition and its modification by male accessory gland secretions. Vet. J. 2013; 195(2): 179-84. https://dx.doi.org/10.1016/j.tvjl.2012.04.027.
  31. Cicinelli E., de Ziegler D. Transvaginal progesterone: evidence for a new functional “portal system” flowing from the vagina to the uterus. Hum. Reprod. Update. 1999; 5(4): 365-72. https://dx.doi.org/10.1093/humupd/5.4.365.
  32. Ahmadi H., Csabai T., Gorgey E., Rashidiani S., Parhizkar F., Aghebati-Maleki L. Composition and effects of seminal plasma in the female reproductive tracts on implantation of human embryos. Biomed. Pharmacother. 2022; 151: 113065. https:/dx.doi.org/10.1016/j.biopha.2022.113065.
  33. Ayaz A., Houle E., Pilsner J.R. Extracellular vesicle cargo of the male reproductive tract and the paternal preconception environment. Syst. Biol. Reprod. Med. 2021; 67(2): 103-11. https://dx.doi.org/10.1080/19396368.2020.1867665.
  34. Yu K., Xiao K., Sun Q., Liu R., Huang L., Zhang P. et al. Comparative proteomic analysis of seminal plasma exosomes in buffalo with high and low sperm motility. BMC Genomics. 2023; 24: 8. https://dx.doi.org/10.1186/s12864-022-09106-2.
  35. Robertson S.A., Guerin L.R., Bromfield J.J., Branson K.M., Ahlström A.C., Care A.S. Seminal fluid drives expansion of the CD4+CD25+ T regulatory cell pool and induces tolerance to paternal alloantigens in mice. Biol. Reprod. 2009; 80(5): 1036-45. https://dx.doi.org/10.1095/biolreprod.108.074658.
  36. Nikolaeva M.A., Babayan A.A., Stepanova E.O., Smolnikova V.I., Kalinina E.A., Krechetova L.V. et al. The retationship of seminal transforming growth factor-β1 and interleukin-18 with reproductive success in women exposed to seminal plasma during IVF/ICSI treatment. J. Reprod. Immunol. 2016; 117: 45-51. https://dx.doi.org/10.1016/j.jri.2016.03.006.
  37. Арефьева А.С., Бабаян А.А., Калинина Е.А., Николаева М.А. Цитокиновый профиль семенной плазмы и эффективность программ вспомогательных репродуктивных технологий. Российский иммунологический журнал. 2021; 24(3): 391-8. [Arefieva A.S., Babayan A.A., Kalinina E.A., Nikolaeva M.A. Cytokine profile of seminal plasma and effectiveness of assisted reproductive technology programs. Russian Journal of Immunology. 2021; 24(3): 391-8. (in Russian)]. https://dx.doi.org/10.46235/1028-7221-1031-CPO.
  38. Nikolaeva M., Arefieva A., Krechetova L., Sukhikh G., Babayan A., Kalinina E. et al. Immunoendocrine markers of stress in seminal plasma at IVF/ICSI failure: A preliminary study. Reprod. Sci. 2021; 28(1): 144-58. https://dx.doi.org/10.1007/s43032-020-00253-z.
  39. Roşca A.E., Vlădăreanu A., Mititelu A., Popescu B.O., Badiu C., Căruntu C. et al. Effects of exogenous androgens on platelet activity and their thrombogenic potential in supraphysiological administration: a literature review. J. Clin. Med. 2021; 10: 147. https://dx.doi.org/10.3390/jcm10010147.
  40. Dupuis M., Severin S., Noirrit-Esclassan E., Arnal J.-F., Payrastre B., Valéra M.-C. Effects of estrogens on platelets and megakaryocytes. Int. J. Mol. Sci. 2019; 20(12): 3111. https://dx.doi.org/10.3390/ijms20123111.
  41. Moraes L.A., Paul-Clark M.J., Rickman A., Flower R.J., Goulding N., Perretti M. Ligand-specific glucocorticoid receptor activation in human platelets. Blood. 2005; 106(13): 4167-75. https:/dx./doi.org/10.1182/blood-2005-04-1723.
  42. Karolczak K., Konieczna L., Soltysik B., Kostka T., Witas P.J., Kostanek J. et al. Plasma concentration of cortisol negatively associates with platelet reactivity in older subjects. Int. J. Mol. Sci. 2023; 24(1): 717. https://dx.doi.org/10.3390/ijms24010717.
  43. Koudouovoh-Tripp P., Hüfner K., Egeter J., Kandler C., Giesinger J.M., Sopper S. et al. Stress enhances proinflammatory platelet activity: the impact of acute and chronic mental stress. J. Neuroimmune Pharmacol. 2021; 16(2): 500-12.https://dx.doi.org/10.1007/s11481-020-09945-4.
  44. Tschuor C., Asmis L.M., Lenzlinger P.M., Tanner M., Härter L., Keel M. et al. In vitro norepinephrine significantly activates isolated platelets from healthy volunteers and critically ill patients following severe traumatic brain injury. Crit. Care. 2008; 12(3): R80. https://dx.doi.org/10.1186/cc6931.
  45. Liu C., Liu H., Wang X., Xinbo S. Clinical significance and expression of PAF and TNF-alpha in seminal plasma of leukocytospermic patients. Mediators Inflamm. 2012; 2012: 639735. https://dx.doi.org/10.1155/2012/639735.
  46. Zhang Q., Shimoya K., Ohta Y., Chin R., Tenma K., Isaka S. et al. Detection of fractalkine in human seminal plasma and its role in infertile patients. Hum. Reprod. 2002; 17(6): 1560-4. https://doi.org/dx.10.1093/humrep/17.6.1560.
  47. Hakimi H., Zainodini N., Khorramdelazad H., Arababadi m.K., Hassanshahi G. Seminal levels of pro-inflammatory (CXCL1, CXCL9, CXCL10) and homeostatic (CXCL12) chemokines in men with asymptomatic Chlamidia trachomatis infection Jundishapur J. Microbiol. 2014; 7(12): e11152.https://dx.doi.org/10.5812/jjm.11152.
  48. Zauli G., Celeghini C., Monasta L., Martinelli M., Luppi S., Gonelli A. et al. Soluble TRAIL is present at high concentrations in seminal plasma and promotes sperm survival. Reproduction. 2014; 148(2): 191-8.https://dx.doi.org/10.1530/REP-14-0144.
  49. Battinelli E.M., Markens B.A., Italiano J.E. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood. 2011; 118(5): 1359-69. https://dx.doi.org/10.1182/blood-2011-02-334524.
  50. Taylor M.L., Misso N.L., Stewart G.A., Thompson P.J. Differential expression of platelet activation markers CD62P and CD63 following stimulation with PAF, arachidonic acid and collagen. Platelets. 1995; 6(6): 394-401.https://dx.doi.org/10.3109/09537109509078478.
  51. Kulkarni S., Woollard K.J., Thomas S., Oxley D., Jackson S.P. Conversion of platelets from a proaggregatory to a proinflammatory adhesive phenotype: role of PAF in spatially regulating neutrophil adhesion and spreading. Blood. 2007; 110 (6): 1879-86. https://dx.doi.org/10.1182/blood-2006-08-040980.
  52. Ma X., Xiaokaiti Y., Lei H., Liu W., Xu J., Sun Y. Epinephrine inhibits vascular hyperpermeability during platelet-activating factor- or ovalbumin-induced anaphylaxis. RSC Adv. 2017; 7: 52762. https://dx.doi.org/10.1039/c7ra09268g.
  53. Levine A.S., Kort H.I., Toledo A.A., Roudebush W.E. A review of the effect of platelet-activating factor on male reproduction and sperm function. J Androl. 2002; 23(4): 471-6.
  54. Letendre E.D., Miron P., Roberts K.D., Langlais J. Platelet-activating factor acetylhydrolase in human seminal fluid. Fertil. Steril. 1992; 57(1): 193-8.
  55. Riley J.K., Heeley J.M., Wyman A.H., Schlichting E.L., Moley K.H., Notes A. TRAIL and KILLER are expressed and induce apoptosis in the murine preimplantation embryo. Biol. Reprod. 2004; 71(3): 871-7.https:/dx./doi.org/10.1095/biolreprod.103.026963.
  56. Wu L., Wang X., He W., Ma X., Wang H., Han M. et al. TRAIL inhibits platelet-induced colorectal cancer cell invasion. J. Int. Med. Res. 2019; 47(2): 962-72. https://dx.doi.org/10.1177/0300060518820785.
  57. Guettler J., Forstner D., Gauster M. Maternal platelets at the first trimester maternal-placental interface – small players with great impact on placenta development. Placenta. 2022; 125: 61-7. https://dx.doi.org/10.1016/j.placenta.2021.12.009.
  58. García-Montalvo I.A., Andrade G.M., Mayoral L.P.-C., Canseco S.P., Cruz R.M., Martínez-Cruz M. et al. Molecules in seminal plasma related to platelets in preeclampsia. Med. Hypotheses. 2016; 93: 27-9. https://dx.doi.org/10.1016/j.mehy.2016.05.009.
  59. Mayoral-Andrade G., Pérez-Campos-Mayoral L., Majluf-Cruz A., Pérez-Campos-Mayoral E., Pérez-Campos-Mayoral C., Rocha-Núñez A. et al. Reduced platelet aggregation in women after intercourse: a possible role for the cyclooxygenase pathway. Clin. Exp. Pharmacol. Physiol. 2017; 44(8): 847-53.https://dx.doi.org/10.1111/1440-1681.12783.
  60. Jakobs K.H., Johnson R.A., Schultz G. Activation of human platelet adenylate cyclase by a bovine sperm component, Biochim. Biophys. Acta. 1983; 756(3): 369-75. https://dx.doi.org/10.1016/0304-4165(83)90347-1.
  61. Gaertner F. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell. 2017; 171(6): 1368-82. https://dx.doi.org/10.1016/j.cell.2017.11.001.
  62. Miao S., Lu M., Liu Y., Shu D., Zhu Y., Song W. et al. Platelets are recruited to hepatocellular carcinoma tissues in a CX3CL1-CX3CR1 dependent manner and induce tumour cell apoptosis. Mol. Oncol. 2020; 14(10): 2546-59.https://dx.doi.org/10.1002/1878-0261.12783.
  63. Kraemer B.F., Borst O., Gehring E.M., Schoenberger T., Urban B., Ninci E. et al. PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1). J. Mol. Med. (Berl.). 2010; 88(12): 1277-88.https://dx.doi.org/10.1007/s00109-010-0680-8.
  64. O’Neil C. Thrombocytopenia is an initial maternal response to fertilization in mice. J. Reprod. Fert. 1985; 73(2): 559-66. https://dx.doi.org/10.1530/jrf.0.0730559.
  65. Серебряная Н.Б., Шанин С.Н., Фомичева Е.Е., Якуцени П.П. Тромбоциты как активаторы и регуляторы воспалительных реакций. Часть 2. Тромбоциты как участники иммунных реакций. Медицинская иммунология. 2019; 21(1): 9-20. [Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 2. Thrombocytes as participants of immune reactions. Medical Immunology (Russia). 2019; 21(1): 9-20. (in Russian)].https://dx.doi.org/10.15789/1563-0625-2019-1-9-20.
  66. Rosin C., Brunner M., Lehr S., Quehenberger P., Panzer S. The formation of platelet-leukocyte aggregates varies during the menstrual cycle. Platelets. 2006; 17(1): 61-6. https://dx.doi.org/10.1080/09537100500227021.
  67. Селютин А.В., Чепанов С.В., Павлов О.В., Корнюшина Е.А., Сельков С.А. Роль тромбоцитарно-моноцитарных комплексов периферической крови в репродуктивных процессах и методы их исследования. Акушерство и гинекология. 2021; 8: 50-8. [Selyutin A.V., Chepanov S.V., Pavlov O.V., Kornyushina E.A., Selkov S.A. The role of peripheral blood platelet-monocyte aggregates in reproductive processes and their study methods. Obstetrics and Gynecology. 2021; (8): 50-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.8.50-58.
  68. Song Z.H., Li Z.Y., Li D.D., Fang W.N., Liu H.Y., Yang D.D. et al. Seminal plasma induces inflammation in the uterus through the γδ T/IL-17 pathway. Sci. Rep. 2016; 6: 25118. https://dx.doi.org/10.1038/srep25118.
  69. Zhang S., Yuan J., Yu M., Fan H., Guo Z-Q., Yang R. et al. IL-17A facilitates platelet function through the ERK2 signaling pathway in patients with acute coronary syndrome. PLoS One. 2012; 7(7): e40641. https://dx.doi.org/10.1371/journal.pone.0040641.
  70. Gatsiou A., Sopova K., Tselepis A., Stellos K. Interleukin-17A triggers the release of platelet-derived factors driving vascular endothelial cells toward a pro-angiogenic state. Cells. 2021; 10(8): 1855. https://dx.doi.org/10.3390/cells10081855.
  71. Arruvito L., Sanz M., Banham A.H., Fainboim L. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol. 2007; 178(4): 2572-8. https://dx.doi.org/10.4049/jimmunol.178.4.2572.
  72. Nikolaeva M., Stepanova E., Arefieva A., Krechetova L., Sukhikh G., Babayan A. et al. The link between seminal cytokine interleukin 18, female circulating regulatory T cells, and IVF/ICSI success. Reprod. Sci. 2019; 26(8): 1034-44. https://dx.doi.org/10.1177/1933719118804404.

Received 14.06.2023

Accepted 20.07.2023

About the Authors

Anastasia S. Zhukova, PhD (Bio), Senior Researcher at the Laboratory of Clinical Immunology, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(495)438-11-83, anastasia.s.belyaeva@gmail.com, https://orcid.org/0000-0003-1155-014X,
117997, Russia, Moscow, Ac. Oparina str., 4.
Marina A. Nikolaeva, Dr. Bio. Sci., Leading Researcher at the Laboratory of Clinical Imunology, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(495)438-11-83, nikolaeva_ma@mail.ru, https://orcid.org/0000-0002-1251-6755,
117997, Russia, Moscow, Ac. Oparina str., 4.
Lubov V. Krechetova, Dr. Med. Sci., Head of the Laboratory of Clinical Immunology, Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, +7(495)438-11-83, k_l_v_@mail.ru, https://orcid.org/0000-0001-5023-3476,
117997, Russia, Moscow, Ac. Oparina str., 4.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.