Impact of sperm DNA fragmentation on the outcomes of pregnancies following natural conception and assisted reproductive techniques

Berdnikova A.I., Ushakova I.V., Gavisova A.A., Ibragimova M.Kh., Durinyan E.R.

Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia

The male factor can be responsible for the inability of couples to conceive a child in 50% of the cases. The standard semen analysis does not completely reflect impaired integrity of spermatozoa genetic material, which may be associated with difficulties in achieving natural conception or with poorer outcomes of IVF programs. Therefore, sperm DNA fragmentation is increasingly used by clinicians to assess male infertility, especially in couples with repeated reproductive losses.
This review presents the analysis of the results reported in the literature on the effect of sperm DNA fragmentation on the outcomes of ART programs; the relationship between DNA fragmentation parameters and early reproductive losses in couples with male factor infertility was determined. A high level of sperm DNA fragmentation has been shown to have a negative effect on the fertilizing ability of spermatozoa. Sperm DNA damage may provide a reliable biomarker of sporadic and habitual miscarriage after natural or assisted conception, as well as provide new guidelines for future approaches to fertility restoration.
Conclusion: Impaired integrity of ejaculate DNA structure has a significant impact on both the natural conception and outcomes of ART programs. In order to achieve effective outcomes of IVF cycles and reduce the risk of early reproductive losses, it is necessary to introduce sperm DNA fragmentation testing into routine practice for specific groups of couples.

Authors’ contributions: All authors equally participated in preparing the publication: Berdnikova A.I. – developing the concept and design of the study, collecting literary data, writing the article; Gavisova A.A., Ushakova I.V., Popova A.Yu. – developing the concept and design of the study, editing the article; Ibragimova M.Kh., Durinyan E.R. – editing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The study was carried out without sponsorship.
For citation: Berdnikova A.I., Ushakova I.V., Gavisova A.A., Popova A.Yu., Ibragimova M.Kh., Durinyan E.R.
Impact of sperm DNA fragmentation on the outcomes of pregnancies following natural conception and 
assisted reproductive techniques.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (12): 12-18 (in Russian)
https://dx.doi.org/10.18565/aig.2024.191

Keywords

male factor infertility
semen analysis
TUNEL
DNA fragmentation
reproductive function
early reproductive losses
assisted reproductive techniques

References

  1. Rex A.S., Aagaard J., Fedder J. DNA fragmentation in spermatozoa: a historical review. Andrology. 2017; 5(4): 622-30. https://dx.doi.org/10.1111/andr.12381.
  2. Руднева С.А., Брагина Е.Е., Арифулин Е.А., Сорокина Т.М., Шилейко Л.В., Ермолаева С.А., Курило Л.Ф., Черных В.Б. Фрагментация ДНК в сперматозоидах и ее взаимосвязь с нарушением сперматогенеза. Андрология и генитальная хирургия. 2014; 15(4): 26-33. [Rudneva S.A., Bragina E.E., Arifulin E.A., Sorokina T.M., Shileyko L.V., Ermolaeva S.A., Kurilo L.F., Chernykh V.B. DNA fragmentation in spermatozoa and its relationship with impaired spermatogenesis. Andrology and Genital Surgery. 2014; 15(4): 26-33. (in Russian)]. https://dx.doi.org/10.17650/2070-9781-2014-4-26-33.19.09.2024).
  3. Cissen M., Wely M.V., Scholten I., Mansell S., Bruin J.P., Mol B.W. et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS One. 2016; 11(11): e0165125. https://dx.doi.org/10.1371/journal.pone.0165125.
  4. Negoescu A., Guillermet C., Lorimier P., Brambilla E., Labat-Moleur F. Importance of DNA fragmentation in apoptosis with regard to TUNEL specificity. Biomed. Pharmacother. 1998; 52(6): 252-8. https://dx.doi.org/10.1016/S0753-3322(98)80010-3.
  5. Овчинников Р.И., Гамидов С.И., Попова А.Ю., Ижбаев С.Х., Ушакова И.В., Голубева О.Н. Причины репродуктивных потерь у мужчин – фрагментация ДНК сперматозоидов. РМЖ. 2015; 11: 634. [Ovchinnikov R.I., Gamidov S.I., Popova A.Yu., Izhbaev S.Kh., Ushakova I.V., Golubeva O.N. The causes of reproductive losses in men are sperm DNA fragmentation. RMJ. 2015; 11: 634. (in Russian)].
  6. Zini A., Albert O., Robaire B. Assessing sperm chromatin and DNA damage: clinical importance and development of standards. Andrology. 2014; 2(3): 322-5. https://dx.doi.org/10.1111/j.2047-2927.2014.00193.x.
  7. Шильникова Е.М., Мазилина М.А., Федорова И.Д. Нарушение целостности ДНК сперматозоидов человека: причины, методы исследования, влияние на исход программ вспомогательных репродуктивных технологий. Медицинская генетика. 2014; 4: 11-9. [Shilnikova E.M., Mazilina M.A., Fedorova I.D. Violation of the integrity of the DNA of human sperm: causes, methods of research, impact on the outcome of assisted reproductive technology programs. Medical Genetics. 2014; (4): 11-9. (in Russian)].
  8. Polis C.B., Cox C.M., Tunçalp Ö., McLain A.C., Thoma M.E. Estimating infertility prevalence in low-to-middle-income countries: an application of a current duration approach to Demographic and Health Survey data. Hum. Reprod. 2017; 32(5): 1064-74. https://dx.doi.org/10.1093/humrep/dex025.
  9. Fainberg J., Kashanian J.A. Recent advances in understanding and managing male infertility. F1000Res. 2019; 8: F1000 Faculty Rev-670. https://dx.doi.org/10.12688/f1000research.17076.1.
  10. Guzick D.S., Overstreet J.W., Factor-Litvak P., Brazil C.K., Nakajima S.T., Coutifaris C. et al.; National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men. N. Engl. J. Med. 2001; 345(19): 1388-93. https://dx.doi.org/10.1056/NEJMoa003005.
  11. Robinson L., Gallos I.D., Conner S.J., Rajkhowa M., Miller D., Lewis S. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum. Reprod. 2012; 27(10): 2908-17. https://dx.doi.org/10.1093/humrep/des261.
  12. Andrabi S.W., Ara A., Saharan A., Jaffar M., Gugnani N., Esteves S.C. Sperm DNA Fragmentation: causes, evaluation and management in male infertility. JBRA Assist. Reprod. 2024; 28(2): 306-19. https://dx.doi.org/10.5935/1518-0557.20230076.
  13. Мазилина М.А., Комарова Е.М., Лесик Е.А., Федорова И.Д., Гзгзян А.М. Влияние фрагментации ДНК сперматозоидов на эффективность оплодотворения и развитие эмбрионов человека, культивируемых in vitro. Акушерство и гинекология. 2017; 3: 69-74. [Mazilina M.A., Komarova E.M., Lesik E.A., Fedorova I.D., Gzgzyan A.M. Impact of sperm DNA fragmentation on the efficiency of fertilization and the development of human embryos cultured in vitro. Obstetrics and Gynecology. 2017; (3): 69-74. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.3.69-74.
  14. Evenson D., Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod. Biomed. Online. 2006; 12(4): 466-72. https://dx.doi.org/10.1016/s1472-6483(10)62000-7.
  15. Vandekerckhove F.W., De Croo I., Gerris J., Vanden Abbeel E., De Sutter P. Sperm chromatin dispersion test before sperm preparation is predictive of clinical pregnancy in cases of unexplained infertility treated with intrauterine insemination and induction with clomiphene citrate. Front. Med. (Lausanne). 2016; 3: 63. https://dx.doi.org/10.3389/fmed.2016.00063.
  16. Esteves S.C., Zini A., Coward R.M., Evenson D.P., Gosálvez J., Lewis S.E.M. et al. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia. 2021; 53(2): e13874. https://dx.doi.org/10.1111/and.13874.
  17. Дударова А.Х., Смольникова В.Ю., Макарова Н.П., Зобова А.В., Горшинова В.К., Калинина Е.А., Наими З. Ассоциация фрагментации ДНК сперматозоидов c эмбриологическими показателями и результативностью программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2017; 6: 91-8. [Dudarova A.Kh.,Smolnikova V.Yu., Makarova N.P., Zobova A.V., Gorshinova V.K., Kalinina E.A., Naimi Z. The association of sperm DNA fragmentation with embryological characteristics and effectiveness of assisted reproductive technology programs. Obstetrics and Gynecology. 2017; (6): 91-8. (in Russian)]. https://dx.doi.org/10.18565/aig.2017.6.91-8.
  18. Zini A., Boman J.M., Belzile E., Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum. Reprod. 2008; 23(12): 2663-8. https://dx.doi.org/10.1093/humrep/den321.
  19. Avendaño C., Franchi A., Duran H., Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil. Steril. 2010; 94(2): 549-57. https://dx.doi.org/10.1016/j.fertnstert.2009.02.050.
  20. Zini A., Meriano J., Kader K., Jarvi K., Laskin C.A., Cadesky K. Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum. Reprod. 2005; 20(12): 3476-80. https://dx.doi.org/10.1093/humrep/dei266.
  21. Morris I.D., Ilott S., Dixon L., Brison D.R. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (Comet assay) and its relationship to fertilization and embryo development. Hum. Reprod. 2002; 17(4): 990-8. https://dx.doi.org/10.1093/humrep/17.4.990.
  22. Henkel R., Kierspel E., Hajimohammad M., Stalf T., Hoogendijk C., Mehnert C. et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod. Biomed. Online. 2003; 7(4): 477-84. https://dx.doi.org/10.1016/s1472-6483(10)61893-7.
  23. Hansen M., Bower C., Milne E., de Klerk N., Kurinczuk J.J. Assisted reproductive technologies and the risk of birth defects--a systematic review. Hum. Reprod. 2005; 20(2): 328-38. https://dx.doi.org/10.1093/humrep/deh593.
  24. Olson C.K., Keppler-Noreuil K.M., Romitti P.A., Budelier W.T., Ryan G., Sparks A.E. et al. In vitro fertilization is associated with an increase in major birth defects. Fertil. Steril. 2005; 84(5): 1308-15. https://dx.doi.org/10.1016/j.fertnstert.2005.03.086.
  25. Bungum M., Humaidan P., Axmon A., Spano M., Bungum L., Erenpreiss J. et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum. Reprod. 2007; 22(1): 174-9. https://dx.doi.org/10.1093/humrep/del326.
  26. Lewis S.E., John Aitken R., Conner S.J., Iuliis G.D., Evenson D.P., Henkel R.et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod. Biomed. Online. 2013; 27(4): 325-37. https://dx.doi.org/10.1016/j.rbmo.2013.06.014.
  27. Haddock L., Gordon S., Lewis S.E.M., Larsen P., Shehata A., Shehata H. Sperm DNA fragmentation is a novel biomarker for early pregnancy loss. Reprod. Biomed. Online. 2021; 42(1):175-84. https://dx.doi.org/10.1016/j.rbmo.2020.09.016.
  28. Zhao J., Zhang Q., Wang Y., Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil. Steril. 2014; 102(4): 998-1005.e8. https://dx.doi.org/10.1016/j.fertnstert.2014.06.033.
  29. Sakkas D., Urner F., Bizzaro D., Manicardi G., Bianchi P.G., Shoukir Y. et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum. Reprod. 1998; 13 (Suppl. 4): 11-9. https://dx.doi.org/10.1093/humrep/13.suppl_4.11.
  30. Frydman N., Prisant N., Hesters L., Frydman R., Tachdjian G., Cohen-Bacrie P. et al. Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil. Steril. 2008; 89(1): 92-7. https://dx.doi.org/10.1016/j.fertnstert.2007.02.022.
  31. Gosden R., Trasler J., Lucifero D., Faddy M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003; 361(9373): 1975-7. https://dx.doi.org/10.1016/S0140-6736(03)13592-1.

Received 02.08.2024

Accepted 18.11.2024

About the Authors

Anastasia I. Berdnikova, PhD student, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology,
Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, berdnikova8002@mail.ru
Irina V. Ushakova, PhD, Researcher at the 1st Gynecological Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, irisun77@mail.ru
Alla A. Gavisova, Dr. Med. Sci., Head of the 1st Gynecological Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, gavialla@yandex.ru
Alina Yu. Popova, PhD, Senior Researcher at the Department of Andrology and Urology, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, alina-dock@ya.ru
Muminat Kh. Ibragimova, PhD, obstetrician-gynecologist-reproduktologist at the 1st Gynecological Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, m_ibragimova@oparina4.ru
Evelina R. Durinyan, PhD, obstetrician-gynecologist-reproduktologist at the 1st Gynecological Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparin str., 4, e_durinyan@oparina4.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.