The transcriptional profile of cumulus cells in women with diminished ovarian reserve in ovarian stimulation protocols in different phases of the menstrual cycle in in vitro fertilization programs

Bogatyreva Kh.A., Mishieva N.G., Burmenskaya O.V., Trofimov D.Yu., Martazanova B.A., Lapina V.S., Korolkova A.I., Martynova M.V., Abubakirov A.N.

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia
Objective. To explore the possibility of using the transcriptional profile in the cumulus cells to predict embryo quality in women with diminished ovarian reserve in the superovulation protocols in the follicular and luteal phases of the menstrual cycle.
Materials and methods. 160 cumulus cell samples from 40 patients with diminished ovarian reserve, who underwent an in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) program, were analyzed during this investigation. The retrieved oocyte-cumulus complexes were divided into 2 groups according to the treatment protocol phase. Group 1 (17 women; 70 samples) included oocytes obtained by IVF/ICSI procedures in the follicular phase of the cycle; Group 2 (23 women; 90 samples) comprised oocytes retrieved via IVF/ICSI during the luteal phase of the cycle. To identify the relationship between the expression levels of mRNA genes and the indicators of embryo quality in women with reduced ovarian reserve in the IVF/ICSI programs, the obtained cumulus cells were divided into three classes based on the quality of embryos according to the morphology assessment criteria: 1) good-quality embryos (n = 42); 2) satisfactory-quality embryos (n = 43); 3) poor-quality embryos (n = 17). A real-time RT-PCR assay was used to estimate cumulus cell mRNA expression for 10 genes: HAS2, PTGS2, GREM1, VCAN, ITPKA, ALCAM (CD166), SDC4, CALM2, SPSB, and TP53I3.
Results. Analysis of embryological indicators revealed no statistically significant differences. The mean number of oocytes retrieved on the day of transvaginal puncture was 3.6±1.9 and 4.2±2.0 in the follicular and luteal phase stimulation groups, respectively (p> 0.05). The number of blastocysts was 1.6±1.4 and 1.9±1.8, respectively (p > 0.05).
The cumulus cells of good-quality embryos displayed an increase in the mRNA expression levels for the HAS2, VCAN, and PTGS2 genes by 1.8, 2.0, and 2.9 times, respectively; and a decrease in that for the ITPKA gene by 1.9 times (p < 0.05). The logistic regression model was proposed to predict embryo quality in women with diminished ovarian reserve, which took into account mRNA expression levels for the VCAN, HAS2, and PTGS2 genes (the sensitivity and specificity of the technique were 90.5 and 70.6%, respectively). The mRNA expression level for the VCAN gene is the most important marker of embryo quality according to the morphology assessment criteria in the IVF/ICSI program. There was a statistically significant increase in the cumulus cell mRNA expression levels for the VCAN, SDC4, and TP53I3 genes in Study Group 2 (p = 0.003, p = 0.005, and
p < 0.001, respectively).
Conclusion. The mRNA expression levels for the VCAN, HAS2, and PTGS2 genes may be used as predictors for the good quality of developing embryos in women with diminished ovarian reserve. Superovulation induction during the luteal phase of the menstrual cycle has no negative impact on the developmental potential of oocytes and the quality of obtained embryos.

Keywords

infertility
ovarian stimulation
luteal phase
cumulus cells
mRNA gene expression
in vitro fertilization

Supplementary Materials

  1. Table 1. Clinical and anamnestic and embryological characteristics of patients included in the study
  2. Table 2. Level of mRNA expression of cumulus cells genes as a function of the phase of the IVF protocol
  3. Table 3. Level of mRNA expression of cumulus cells genes depending on embryo quality
  4. Table 4. The distribution of samples in the predicted embryo quality groups in accordance with the proposed statistical model
  5. Fig . 1. ROC-curves of the predictors of embryo quality
  6. Fig . 2. Distribution of values ​​of the logarithmic regression function in research groups

References

1. Краснопольская К.В., Калугина А.С. Феномен «бедного» ответа на стимуляторы суперовуляции в программах ЭКО. Проблемы репродукции. 2004; 1: 51-8. [Krasnopolskaya K.V., Kalugina A.S. The phenomenon of a “poor” response to stimulators of superovulation in IVF programs. Problemy reproduktsii. 2004; 1: 51-8. (in Russian)]

2. Ubaldi F.M., Vaiarelli A., Alviggi C., Trabucco E., Zullo F., Capalbo A. et al. Double stimulation in a single menstrual cycle increases the number of oocytes retrieved in poor prognosis patients undergoing IVF treatment. Prospective study with historical control. Fertil. Steril. 2015; 104(3, Suppl.): e322. P-630.

3. Triantafyllidou O., Sigalos G., Vlahos N. Dehydroepiandrosterone (DHEA) supplementation and IVF outcome in poor responders. Hum. Fertil. (Camb.). 2016; 7: 1-8.

4. de Mello Bianchi P.H., Serafini P., Monteiro da Rocha A., Assad Hassun P., Alves da Motta E.L., Sampaio Baruselli P., Chada Baracat E. Review: follicular waves in the human ovary: a new physiological paradigm for novel ovarian stimulation protocols. Reprod. Sci. 2010; 17(12): 1067-76.

5. Kuang Y., Chen Q., Hong Q., Lyu Q., Ai A., Fu Y., Shoham Z. Double stimulations during the follicular and luteal phases of poor responders in IVF/ICSI programmes (Shanghai protocol). Reprod. Biomed. Online. 2014; 29(6): 684-91.

6. Ebner T., Moser M., Sommergruber M., Tews G. Selection based on morphological assessment of oocytes and embryos at different stages of preimplantation development: a review. Hum. Reprod. Update. 2003; 9(3): 251-62.

7. Alfarawati S., Fragouli E., Colls P., Stevens J., Gutiérrez-Mateo C., Schoolcraft W.B. et al. The relationship between blastocyst morphology, chromosomal abnormality, and embryo gender. Fertil. Steril. 2011; 95(2): 520-4.

8. McKenzie L.J., Pangas S.A., Carson S.A., Kovanci E., Cisneros P., Buster J.E. et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 2004; 19(12): 2869-74.

9. Assou S., Haouzi D., Mahmoud K., Aouacheria A., Guillemin Y., Pantesco V. et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol. Hum. Reprod. 2008; 14(12): 711-9.

10. Hamel M., Dufort I., Robert C., Leveille M.C., Leader A., Sirard M.A. Genomic assessment of follicular marker genes as pregnancy predictors for human IVF. Mol. Hum. Reprod. 2010; 16: 87-96.

11. Hamel M., Dufort I., Robert C., Gravel C., Leveille M.C., Leader A., Sirard M.A. Identification of differentially expressed markers in human follicular cells associated with competent oocytes. Hum. Reprod. 2008; 23(5): 1118-27.

12. Moley K.H., Schreiber J.R. Ovarian follicular growth, ovulation and atresia. Endocrine, paracrine and autocrine regulation. Adv. Exp. Med. Biol. 1995; 377: 103-19.

13. Gilchrist R.B., Lane M., Thompson J.G. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum. Reprod. Update. 2008; 14(2): 159-77.

14. Tanghe S., Van Soom A., Nauwynck H., Coryn M., de Kruif A. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 2002; 61(3): 414-24.

15. Albertini D.F., Combelles C.M., Benecchi E., Carabatsos M.J. Cellular basis for paracrine regulation of ovarian follicle development Reproduction. 2001; 121(5): 647-53.

16. Блашкив Т.В., Шепель А.А., Вознесенская Т.Ю. Экспрессия генов клетками кумулюсного окружения ооцита в период овуляции и оплодотворения (обзор литературы). Проблемы репродукции. 2014; 1: 55-8. [Blashkov T.V., Shepel A.A., Voznesenskaya T.Yu. Expression of genes by cells of cumulus surrounding oocyte during ovulation and fertilization (literature review). Problemy reproduktsii. 2014; 1: 55-8. (in Russian)]

17. Anderson R.A., Sciorio R., Kinnell H., Bayne R.A., Thong K.J., de Sousa P.A., Pickering S. Cumulus gene expression as a predictor of human oocyte fertilisation, embryo development and competence to establish a pregnancy. Reproduction. 2009;138(4): 629-37.

18. Wathlet S., Adriaenssens T., Segers I., Verheyen G., Van de Velde H., Coucke W. et al. Cumulus cell gene expression predicts better cleavage-stage embryo or blastocyst development and pregnancy for ICSI patients. Hum. Reprod. 2011; 26(5): 1035-51.

19. Gebhardt K.M., Feil D.K., Dunning K.R., Lane M., Russell D.L. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertil. Steril. 2011; 96(1): 47-52.

20. Wathlet S., Adriaenssens T., Segers I., Verheyen G., Janssens R., Coucke W. et al. New candidate genes to predict pregnancy outcome in single embryo transfer cycles when using cumulus cell gene expression. Fertil. Steril. 2012; 98(2): 432-9.

21. Сафронова Н.А., Калинина Е.А., Донников А.Е., Бурменская О.В., Макарова Н.П., Зобова А.В., Алиева К.У., Горшинова В.К. Трофимов Д.Ю., Сухих Г.Т. Ассоциация экспрессии генов в кумулюсных клетках с эмбриологическими показателями в программах вспомогательных репродуктивных технологий. Акушерство и гинекология. 2016; 7: 60-6. http://dx.doi.org/10.18565/aig.2016.7.60-66 [Safronova N.A., Kalinina E.A., Donnikov A.E., Burmenskaya O.V., Makarova N.P., Zobova A.V., Alieva K.U., Gorshinova V.K., Trofimov D.Yu., Sukhikh G.T. Association of cumulus cell gene expression with embryological indicators in assisted reproductive technology programs. Akusherstvo i ginekologiya/Obstetrics and Gynecology. 2016; (7): 60-6. (in Russian) http://dx.doi.org/10.18565/aig.2016.7.60-66]

22. Gardner D.K., Schoolcraft W.B. In vitro culture of human blastocysts. In: Jansen R., Mortimer D., eds. Toward reproductive certainty: fertility and genetics beyond. Carnforth: Parthenon Publishing; 1999: 378-88.

23. Sathyan S., Koshy L.V., Balan S., Easwer H.V., Premkumar S., Nair S. et al. Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene. 2014; 2: 651-60.

24. Theocharis A.D. Versican in health and disease. Connect. Tissue Res. 2008; 49(3): 230-4.

25. LaPierre D.P., Lee D.Y., Li S.Z., Xie Y.Z., Zhong L., Sheng W. et al. The ability of versican to simultaneously cause apoptotic resistance and sensitivity. Cancer Res. 2007; 67(10): 4742-50.

26. Bukong T.N., Maurice S.B., Chahal B., Schaeffer D.F., Winwood P.J.Versican: a novel modulator of hepatic fibrosis. Lab. Invest. 2016; 96(3): 361-74.

27. Xie J., Wang J., Li R., Dai Q., Yong Y., Zong B. et al. Syndecan-4 over-expression preserves cardiac function in a rat model of myocardial infarction. J. Mol. Cell. Cardiol. 2012; 53(2): 250-8.

28. Sutton A., Friand V., Brulé-Donneger S., Chaigneau T., Ziol M., Sainte-Catherine O. et al. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol. Cancer Res. 2007; 5(1): 21-33.

29. Sakata M., Kobayashi H., Sun G.W., Mochizuki O., Takagi A., Kojima T. Ryudocan expression by luteinized granulosa cells is associated with the process of follicle atresia. Fertil. Steril. 2000; 74(6): 1208-14.

30. Porté S., Valencia E., Yakovtseva E.A., Borràs E., Shafqat N., Debreczeny J.E. et al. Three-dimensional structure and enzymatic function of proapoptotic human p53-inducible quinone oxidoreductase PIG3. J. Biol. Chem. 2009; 284(25): 17194-205.

31. Lee J.H., Kang Y., Khare V., Jin Z.Y., Kang M.Y., Yoon Y. et al. The p53-inducible gene 3 (PIG3) contributes to early cellular response to DNA damage. Oncogene. 2010; 29(10): 1431-50.

32. Herraiz C., Calvo F., Pandya P., Cantelli G., Rodriguez-Hernandez I., Orgaz J.L. et al. Reactivation of p53 by a cytoskeletal sensor to control the balance between DNA damage and tumor dissemination. J. Natl. Cancer Inst. 2015;108(1): pii: djv289.

33. Fragouli E., Wells D., Iager A.E., Kayisli U.A., Patrizio P. Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy. Hum. Reprod. 2012; 27(8): 2559-68.

34. Marei W.F.A., Salavati M., Fouladi-Nashta A.A. Critical role of hyaluronidase-2 during preimplantation embryo development. Mol. Hum. Reprod. 2013; 19(9): 590-9.

35. Yokoo M., Sato E. Cumulus-oocyte complex interactions during oocyte maturation. Int. Rev. Cytol. 2004; 235: 251-91.

36. Itano N., Kimata K. Mammalian hyaluronan synthases. IUBMB Life. 2002; 54(4): 195-9.

37. Camenisch T.D., Spicer A.P., Brehm-Gibson T., Biesterfeldt J., Augustine M.L., Calabro A. Jr. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 2000; 106(3): 349-60.

38. Hernandez-Gonzalez I., Gonzalez-Robayna I., Shimada M., Wayne C.M., Ochsner S.A., White L., Richards J.S. Gene expression profiles of cumulus cell oocyte complexes during ovulation reveal cumulus cells express neuronal and immune-related genes: does this expand their role in the ovulation process? Mol. Endocrinol. 2006; 20(6): 1300-21.

39. Shimada M., Yanai Y., Okazaki T., Noma N., Kawashima I., Mori T., Richards J.S. Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization. Development. 2008; 135(11): 2001-11.

40. Alaniz L., Rizzo M., Garcia M.G., Piccioni F., Aquino J.B., Malvicini M. et al. Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma. Cancer Immunol. Immunother. 2011; 60(10): 1383-95.

41. Ohno-Nakahara M., Honda K., Tanimoto K., Tanaka N., Doi T., Suzuki A. et al. Induction of CD44 and MMP expression by hyaluronidase treatment of articular chondrocytes. J. Biochem. 2004; 135(5): 567-75.

42. Matsumoto K., Li Y., Jakuba C., Sugiyama Y., Sayo T., Okuno M. et al. Conditional inactivation of Has2 reveals a crucial role for hyaluronan in skeletal growth, patterning, chondrocyte maturation and joint formation in the developing limb. Development. 2009; 136:2825-35.

43. Arosh J.A., Banu S.K., Chapdelaine P., Fortier M.A. Temporal and tissue-specific expression of prostaglandin receptors EP2, EP3, EP4, FP, and cyclooxygenases 1 and 2 in uterus and fetal membranes during bovine pregnancy. Endocrinology. 2004; 145(1): 407-17.

44. Davis B.J., Lennard D.E., Lee C.A., Tiano H.F., Morham S.G., Wetsel W.C., Langenbach R. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E2 and interleukin-1beta. Endocrinology. 1999; 140(6): 2685-95.

45. Lim H., Paria B.C., Das S.K., Dinchuk J.E., Langenbach R., Trzaskos J.M., Dey S.K. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997; 91(2): 197-208.

46. Adriaenssens T., Segers I., Wathlet S., Smitz J. The cumulus cell gene expression profile of oocytes with different nuclear maturity and potential for blastocyst formation. J. Assist. Reprod. Genet. 2011; 28(1): 31-40.

47. Cillo F., Brevini T.A., Antonini S., Paffoni A., Ragni G., Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007; 134(5): 645-50.

Received 15.05.2017

Accepted 23.06.2017

About the Authors

Bogatyreva Kh.A., postgraduate of 1st gynecology department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +79266085182. Е-mail: bogatyreva-khava@bk.ru
Mishieva N.G., PhD, MD, Senior researcher of 11st gynecology department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. 117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +74954382622. E-mail: nondoc555@mail.ru
Burmenskaya O.V., PhD., D.Sc., Senior Researsher of molecular-genetics Department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. 117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +74954381341. E-mail: o_bourmenskaya@oparina4.ru
Trofimov D.Yu., PhD, D.Sc., professor, Head of molecular-genetics Department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia. 117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +74954381341. Е-mail: d_trofimov@oparina4.ru
Martazanova B.A., PhD, Junior Researcher of 1st gynecology department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +79671238824. Е-mail: bellamart88@mail.ru
Lapina V.S., postgraduate of 1st gynecology department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +79099202305. Е-mail: tifaniwow@gmail.com
Korolkova A.I., graduate student of 1-st gynecology department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +79153220879. E-mail: zaikinaai@icloud.com
Martynova M.V., PhD, doctor of 1-st gynecology department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +79167099373. Е-mail: martinova_m@bk.ru
Abubakirov A.N., PhD, Head of 1st gynecology department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Mosсow, Ac. Oparina str. 4. Теl.: +74954382622. Е-mail: nondoc555@mail.ru

For citations: Bogatyreva Kh.A., Mishieva N.G., Burmenskaya O.V., Trofimov D.Yu., Martazanova B.A., Lapina V.S., Korolkova A.I., Martynova M.V., Abubakirov A.N. The transcriptional profile of cumulus cells in women with diminished ovarian reserve in ovarian stimulation protocols in different phases of the menstrual cycle in in vitro fertilization programs. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (12): 68-77. (in Russian)
https://dx.doi.org/10.18565/aig.2017.12.68-77

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.