Medical decision support systems in obstetrics: opportunities and prospects

Altukhova O.S., Balashov I.S., Gorina K.A., Lagutin V.V., Naumov V.A., Borovikov P.I., Z.S. Khodzhaeva Z.S.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia
This literature review is dedicated to the medical decision support system (MDSS), a promising area in clinical medicine, which is gaining recognition and dissemination.
The authors describe 23 key publications on MDSS in the period from 2008 to 2019, review potential and realized opportunities, limitations, features of introducing and using MDSS, and also consider solutions in obstetrics and related specialties. They give a classification of mathematical methods used in the creation of decision-making models and provide explanations of the advantages and disadvantages of various MDSS implementations.
The authors identify 9 publications on complicated pregnancy, 6 on childbirth and decision-making support during obstetric care, 4 on the evaluation of the fetal status, and 4 universal systems. They present hypercoagulable states, hypertensive disorders, systemic lupus erythematosus, gestational diabetes mellitus, miscarriage, and ectopic pregnancy among the examined pathologies during pregnancy. The review also includes works on the detection of fetal abnormalities and fetal distress syndrome. Searching for publications revealed no articles on the description or introduction of MDSS in obstetrics; however, the review also presents Russian works on the development of MDSS in related medicine fields. The authors formulate the conclusions that despite a significant number of experimental developments, the main difficulties occur when implementing the results of studies in real clinical practice; at the same time, the introduction is generally limited to the framework of individual health care facilities.

Keywords

medical decision support system
obstetrics
mathematical modeling

References

  1. Torigoe I., Shorten A. Using a pregnancy decision support program for women choosing birth after a previous caesarean in Japan: A mixed methods study. Women Birth. 2018; 31(1): e9-e19. https://dx.doi.org/10.1016/j.wombi.2017.06.001.
  2. Seitinger A., Rappelsberger A., Leitich H., Binder M., Adlassnig K.P. Executable medical guidelines with Arden Syntax-Applications in dermatology and obstetrics. Artif. Intell. Med. 2018; 92: 71-81. https://dx.doi.org/10.1016/j.artmed.2016.08.003.
  3. Lewandrowski K. Integrating decision support into a laboratory utilization management program. Clin. Lab. Med. 2019; 39(2): 245-57. https://dx.doi.org/10.1016/j.cll.2019.01.004.
  4. Ramos J.G., Perondi B., Dias R.D., Miranda L.C., Cohen C., Carvalho C.R. et al. A decision-aid tool for ICU admission triage is associated with a reduction in potentially inappropriate intensive care unit admissions. J. Crit. Care. 2019; 51: 77-83. https://dx.doi.org/10.1016/j.jcrc.2019.02.002.
  5. Faria D.K., Taniguchi L.U., Fonseca L.A.M., Ferreira-Junior M., Aguiar F.J.B., Lichtenstein A. et al. Improving serum calcium test ordering according to a decision algorithm. J. Clin. Pathol. 2019; 72(3): 232-6. https://dx.doi.org/10.1136/jclinpath-2018-205026.
  6. Akbulut A., Ertugrul E., Topcu V. Fetal health status prediction based on maternal clinical history using machine learning techniques. Comput. Methods Programs Biomed. 2018; 163: 87-100. https://dx.doi.org/10.1016/j.cmpb.2018.06.010.
  7. Van Belle V.M., Van Calster B., Timmerman D., Bourne T., Bottomley C., Valentin L. et al. A mathematical model for interpretable clinical decision support with applications in gynecology. PLoS One. 2012; 7(3): e34312. https://dx.doi.org/10.1371/journal.pone.0034312.
  8. Halpi K.L., Paprocki E.L., McDonough R.J. Utilizing health information technology to improve the recognition and management of life-threatening adrenal crisis in the pediatric emergency department: medical alert identification in the 21st century. J. Pediatr. Endocrinol. Metab. 2019; 32(5): 513-8. https://dx.doi.org/10.1515/jpem-2018-0566.
  9. Itani S., Lecron F., Fortemps P. Specifics of medical data mining for diagnosis aid: a survey. Expert Syst. Appl. 2019; 118: 300-4. https://dx.doi.org/10.1016/j.eswa.2018.09.056.
  10. Hyafil L., Rivest R.L. Constructing optimal binary decision trees is NP-complete. Inf. Process. Lett. 1976; 5(1): 15-7. https://dx.doi.org/10.1016/0020-0190(76)90095-8.
  11. Bramer M. Principles of data mining. London: Springer; 2007.
  12. Deng H., Runge G., Tuv E. Bias of importance measures for multi-valued attributes and solutions. Springer; 2011: 293-300.
  13. D’Souza R., Shah P.S., Sander B. Clinical decision analysis in perinatology. Acta Obstet. Gynecol. Scand. 2018; 97(4): 491-9. https://dx.doi.org/10.1111/aogs.13264.
  14. Miller M.K., Mollen C., Behr K., Dowd M.D., Miller E., Satterwhite C.L. et al. Development of a novel computerized clinical decision support system to improve adolescent sexual health care provision. Acad. Emerg. Med. 2019; 26(4): 420-33. https://dx.doi.org/10.1111/acem.13570.
  15. Gorthi A., Firtion C., Vepa J. Automated risk assessment tool for pregnancy care. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2009: 6222-5.
  16. Moreira M.W.L., Rodrigues J.J.P.C., Kumar N., Niu J., Woungang I. Performance assessment of decision tree-based predictive classifiers for risk pregnancy care. In: GLOBECOM 2017 - 2017 IEEE Global Communications Conference. 2017: ID: 30231937. https://dx.doi.org/10.1109/GLOCOM.2017.8254451.
  17. Bourgani E., Stylios C.D., Manis G., Georgopoulos V.C. Timed fuzzy cognitive maps for supporting obstetricians’ decisions. In: 6th European Conference of the International Federation for Medical and Biological Engineering. 2015: 753-6.
  18. Douali N., Dollon J., Jaulent M.C. Personalized prediction of gestational Diabetes using a clinical decision support system. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2015: ID: 6494264. https://dx.doi.org/10.1109/FUZZ-IEEE.2015.7337813.
  19. Hao S.R., Geng S.C., Fan L.X., Chen J.J., Zhang Q., Li L.J. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model. J. Zhejiang Univ. Sci. B. 2017; 18(5): 393-401. https://dx.doi.org/10.1631/jzus.B1600273.
  20. Zhang Y., Zhao Z. Fetal state assessment based on cardiotocography parameters using PCA and AdaBoost. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2017: ID: 3686538. https://dx.doi.org/10.1109/CISP-BMEI.2017.8302314.
  21. Alberola-Rubio J., Garcia-Casado J., Prats-Boluda G., Ye-Lin Y., Desantes D., Valero J., Perales A. Prediction of labor onset type: spontaneous vs induced; role of electrohysterography? Comput. Methods Programs Biomed. 2017; 144: 127-33. https://dx.doi.org/10.1016/j.cmpb.2017.03.018.
  22. Ferroni P., Zanzotto F., Riondino S., Scarpato N., Guadagni F., Roselli M. Breast cancer prognosis using a machine learning approach. Cancers (Basel). 2019; 11(3): 328. https://dx.doi.org/10.3390/cancers11030328.
  23. Turki T., Wang J.T.L. Clinical intelligence: New machine learning techniques for predicting clinical drug response. Comput. Biol. Med. 2019; 107: 302-22. https://dx.doi.org/10.1016/j.compbiomed.2018.12.017.
  24. Fonseca F., Peixoto H., Miranda F., Machado J., Abelha A. Step towards prediction of perineal tear. Procedia Comput. Sci. 2017;113: 565-70.
  25. Moreira M.W.L., Rodrigues J.J.P.C., Sangaiah A.K., Al-Muhtadi J., Korotaev V. Semantic interoperability and pattern classification for a service-oriented architecture in pregnancy care. Futur. Gener. Comput. Syst. 2018; 89: 137-47.
  26. Lam J., Noor Y.A., Supriyanto E. Ontology driven knowledge base for high risk pregnancy management. In: 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME). 2015: 196-201.
  27. Leinweber K.A., Columbo J.A., Kang R., Trooboff S.W., Goodney P.P. A Review of decision aids for patients considering more than one type of invasive treatment. J. Surg. Res. 2019; 235: 350-66. https://dx.doi.org/10.1016/j.jss.2018.09.017.
  28. Shamoon F., Leitich H., de Bruin J.S., Rappelsberger A., Adlassnig K.P. Clinical workflow modeling in obstetrics: hepatitis B in pregnancy. Stud. Health Technol. Inform. 2017; 245: 1336.
  29. Loreto P., Fonseca F., Morais A., Peixoto H., Abelha A., Machado J. Improving maternity care with business intelligence. In: 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). 2017: 170-7.
  30. Georgieva A., Redman C.W.G., Papageorghiou A.T. Computerized data-driven interpretation of the intrapartum cardiotocogram: a cohort study. Acta Obstet. Gynecol. Scand. 2017; 96(7): 883-91. https://dx.doi.org/10.1111/aogs.13136.
  31. Yılmaz E. Fetal state assessment from cardiotocogram data using artificial neural networks. J. Med. Biol. Eng. 2016; 36(6): 820-32.
  32. Van Calster B., Van Huffel S., Timmerman D., Kirk E., Bourne T., Condous G. Towards a clinical decision support system for pregnancies of unknown location. In: 2008 21st IEEE International Symposium on Computer-Based Medical Systems. 2008: 581-3.
  33. Horner V., Rautenbach P., Mbananga N., Mashamba T., Kwinda H. An e-Health decision support system for improving compliance of health workers to the maternity care protocols in South Africa. Appl. Clin. Inform. 2013; 4(1): 25-36.
  34. Merriel A., Murove B.T., Merriel S.W.D., Sibanda T., Moyo S., Crofts J. Implementation of a modified obstetric early warning system to improve the quality of obstetric care in Zimbabwe. Int. J. Gynaecol. Obstet. 2017; 136(2): 175-9. https://dx.doi.org/10.1002/ijgo.12028.
  35. Bolgova K.V., Kovalchuk S.V., Balakhontceva M.A., Zvartau N.E., Metsker O.G. Human computer interaction during clinical decision support with electronic health records improvement. Int. J. E-Health Med. Commun. 2020; 11(1): 93-106.
  36. Клейменова Е.Б., Назаренко Г.И., Яшина Л.П., Пающик С.А. Проблема трансляции знаний в здравоохранении: инструменты для ее решения в области безопасности пациентов. Вестник Российской академии медицинских наук. 2018; 73(2): 105-14. [Kleymenova E.B., Nazarenko G.I., Payushchik S.A., Yashina L.P. The problem of knowledge translation in healthcare: tools for its solution in the area of patient safety. Vestnik Rossiiskoi akademii meditsinskikh nauk/Ann. Russ. Acad. Med. Sci. 2018; 73(2): 105-14. (in Russian)].
  37. Abuhay T.M., Nigatie Y.G., Metsker O.G., Kovalchuk S.V. Investigating application of change point analysis in monitoring health condition of acute coronary syndrome patients. Procedia Comput. Sci. 2018; 136: 408-15.

Received 07.02.2020

Accepted 29.06.2020

About the Authors

Olga S. Altukhova, Software Engineer, Bioinformatics Laboratory, National Medical Research Center of Obstetrics, Gynecology and Perinatology named after
Academician V.I. Kulakov Ministry of Health of Russia. Tel.: +7(495)438-20-90. E-mail: olg333@yandex.ru.
4-1, Oparina str., Moscow, 117997, Russian Federation.
Ivan S. Balashov, Junior Researcher, Bioinformatics Laboratory, National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after
Academician V.I. Kulakov Ministry of Health of Russia. Tel.: +7(495)438-20-90. E-mail: i_balashov@oparina4.ru.
4-1, Oparina str., Moscow, 117997, Russian Federation.
Ksenia A. Gorina, Junior researcher the Department of Pregnancy Pathology, National Medical Research Center for Obstetrics, Gynecology and Perinatology named
after Academician V.I. Kulakov Ministry of Healthcare of Russian Federation. Tel.: +7(926)649-77-32. E-mail: k_gorina@oparina4.ru.
4, Oparina str., Moscow, 117997, Russian Federation.
Vadim V. Lagutin, Software Engineer, Bioinformatics Laboratory, National Medical Research Center of Obstetrics, Gynecology and Perinatology named after
Academician V.I. Kulakov Ministry of Health of Russia. Tel.: +7(495)438-20-90. E-mail: laggi@mail.ru.
4-1, Oparina str., Moscow, 117997, Russian Federation.
Vladimir A. Naumov, Researcher, Bioinformatics Laboratory, National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after
Academician V.I. Kulakov, Ministry of Health of Russia. Tel.: +7(495)438-20-90. E-mail: looongdog@gmail.com.
4-1, Oparina str., Moscow, 117997, Russian Federation.
Pavel I. Borovikov, Head of Bioinformatics Laboratory, National Medical Research Center of Obstetrics, Gynecology and Perinatology named after Academician
V.I. Kulakov Ministry of Health of Russia. Tel.: +7(495)438-20-90. E-mail: p_borovikov@oparina4.ru.
4-1, Oparina str., Moscow, 117997, Russian Federation.
Zulfiya S. Khodzhaeva, Deputy Director of Obstetrics Institute National Medical Research Center of Obstetrics, Gynecology and Perinatology named
after Academician V.I. Kulakov Ministry of Health of Russia. Tel.: +7(495)438-07-88. E-mail: z_khodzhaeva @oparina4.ru.
4, Oparina str., Moscow, 117997, Russian Federation.

For citation: Altukhova O.S., Balashov I.S., Gorina K.A., Lagutin V.V., Naumov V.A., Borovikov P.I., Khodzhaeva Z.S. Medical decision support systems in obstetrics: opportunities and prospects.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2020; 7: 5-11 (in Russian).
https://dx.doi.org/10.18565/aig.2020.7.5-11

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.