Functional magnetic resonance imaging in gynecology

Miroshnikova N.A., Bychenko V.G., Adamyan L.V., Kozlova A.V., Makiyan Z.N.

Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia
Objective. To study the data available in current literature on the use of functional magnetic resonance imaging (MRI) procedures in gynecological practice.
Material and methods. The paper reviews 120 publications (from 2000 to 2016) on the use of functional MRI procedures in gynecology to treat various abnormalities of the small pelvic organs.
Results. Functional MRI procedures are called those allowing morphological and functional analyses of the small pelvic organs. These include diffusion MRI (diffusion-weighted MRI, diffusion-tensor imaging) and contrast-enhanced MRI. Perfusion MRI (for estimation of hemodynamic parameters), varieties of which are dynamic contrast-enhanced MRI (with bolus injection of a contrast agent), blood-oxygen-level-dependent (BOLD) MRI, and arterial spin labeling (ASL) MRI, is used more rarely in gynecological practice.
Conclusion. Functional MRI procedures allow physicians to pass from visualization of anatomical disorders to a functional diagnosis at the hemodynamic, tissue, and cellular levels, which contributes to the choice of a policy of treatment and its control.


functional magnetic resonance imaging
diffusion MRI
perfusion MRI
dynamic contrast-enhanced MRI
blood-oxygen-level-dependent MRI
arterial spin labeling MRI
cine MRI


1. Robert Y., Launay S., Mestdagh P., Moisan S., Boyer C., Rocourt N., Cosson M. MRI in gynecology. J. Gynecol. Obstet. Biol. Reprod. (Paris). 2002; 31(5): 417-39.

2. Adamyan L.V., Demidov V.N., Gus A.I., Obelchak I.S., eds. Radiation diagnostics and therapy in obstetrics and gynecology. National guide. Moscow: GEOTAR-Media; 2012. 656. (in Russian)

3. Kulakov V.I., Adamyan L.V., Muratov K.D. Magnetic resonance imaging in gynecology: Atlas. Moscow: Antidor; 1999. (in Russian)

4. Trufanov G.E., Panov V.O. Manual of x-ray diagnostics in gynecology. St-Petersburg: ELBI-SPb; 2008. (in Russian)

5. Adamyan L. V., Kulakov V. I., Muratov D. K., Makarenko V. N. Spiral computed tomography in gynecology: Atlas. Moscow: Medicina; 2001. 312с. (in Russian)

6. Kaproth-Joslin K., Dogra V. Imaging of female infertility: a pictorial guide to the hysterosalpingography, ultrasonography, and magnetic resonance imaging findings of the congenital and acquired causes of female infertility. Radiol. Clin. North Am. 2013; 51(6): 967-81. doi: 10.1016/j.rcl.2013.07.002.

7. Bermejo C., Martínez-Ten P., Recio M., Ruiz-López L., Díaz D., Illescas T. Three-dimensional ultrasound and magnetic resonance imaging assessment of cervix and vagina in women with uterine malformations. Ultrasound Obstet. Gynecol. 2014; 43(3): 336-45. doi: 10.1002/uog.12536.

8. Letyagin A.Y., Tulupov A.A., Savelov A.A., Korostyshevsky M.A. Magnetic resonance imaging: possibilities of modern imaging technologies in clinical diagnostics. Vestnik NSU. 2005; 90(2): 63-86. (in Russian)

9. Rogozhin, V.A. MRI in gynecological practice. REJR. 2012; 2(3). (in Russian)

10. Patenaude Y., Pugash D., Lim K., Morin L. The use of magnetic resonance imaging in the obstetric patient. J. Obstet. Gynaecol. Can. 2014; 36(4): 349-63.

11. Fujiwara Y., Kata T., Fujimoto S., Yachida T., Kanamoto M., Nanbu Y. et al. Development of an magnetic resonance imaging safety management system for metallic biomedical products using an magnetic resonance compatibility database and inquiry-based patient records. Nihon Hōshasen Gijutsu Gakkai Zasshi. 2014; 70(12): 1413-9. doi: 10.6009/jjrt.2014_JSRT_70.12.1413.

12. Higgins J.V., Gard J.J., Sheldon S.H., Espinosa R.E., Wood C.P., Felmlee J.P. et al. Safety and outcomes of magnetic resonance imaging in patients with abandoned pacemaker and defibrillator leads. Pacing Clin. Electrophysiol. 2014; 37(10): 1284-90. doi: 10.1111/pace.12419.

13. Nospes S., Mann W., Keilmann A. Magnetic resonance imaging in patients with magnetic hearing implants: overview and procedural management. Radiologe. 2013; 53(11): 1026-32. doi: 10.1007/s00117-013-2570-x.

14. Enders J., Zimmermann E., Rief M., Martus P., Klingebiel R., Asbach P. et al. Reduction of claustrophobia with short-bore versus open magnetic resonance imaging: a randomized controlled trial. PLoS One. 2011; 6(8): 234-94. doi: 10.1371/journal.pone.0023494.

15. Adamyan L.V., Panov V.O., Makiyan Z.N., Panov M.M., Kulabukhova E.A. Magnetic resonance imaging in the differential diagnosis of anomalies of the uterus and vagina. Problems of reproduction. 2009; 5: 14-27. (in Russian)

16. Marcal L., Nothaft M.A., Coelho F., Volpato R., Iyer R. Mullerian duct anomalies: MR imaging. Abdom. Imaging. 2011; 36(6): 756-64. doi: 10.1007/s00261-010-9681-x.

17. McRobbie D.W. MRI. From picture to proton. New York, Cambridge; 2006. 393с.

18. Yoo R.-E., Cho J.Y., Kim S.Y., Kim S.H. Magnetic resonance evaluation of Müllerian remnants in Mayer-Rokitansky-Küster-Hauser syndrome. Korean J. Radiol. 2013; 14(2): 233-9. doi: 10.3348/kjr.2013.14.2.233.

19. Rauch G.M., Kaur H., Choi H., Ernst R.D., Klopp A.H., Boonsirikamchai P. et al. Optimization of MR imaging for pretreatment evaluation of patients with endometrial and cervical cancer. Radiographics. 2014; 34(4): 1082-98. doi: 10.1148/rg.344140001.

20. Bermejo C., Martínez Ten P., Cantarero R., Diaz D., Pérez Pedregosa J., Barrón E. et al. Three-dimensional ultrasound in the diagnosis of Müllerian duct anomalies and concordance with magnetic resonance imaging. Ultrasound Obstet. Gynecol. 2010; 35(5): 593-601. doi: 10.1002/uog.7551.

21. Chassang M., Novellas S., Baudin G., Delotte J., Mialon O., Bongain A., Chevallier P. Contribution of new MRI sequences in the exploration of the pelvic gynaecological disease. J. Gynecol. Obstet. Biol. Reprod. (Paris). 2011; 40(5): 399-406. doi: 10.1016/j.jgyn.2011.05.003.

22. Koyama T., Togashi K. Functional MR imaging of the female pelvis. J. Magn. Reson. Imaging. 2007; 25(6): 1101-12.

23. Kido A., Fujimoto K., Okada T., Togashi K. Advanced MRI in malignant neoplasms of the uterus. J. Magn. Reson. Imaging. 2013; 37(2): 249-64. doi: 10.1002/jmri.23716.

24. Alvarez Moreno E., Jimenez de la Peña M., Cano Alonso R. Role of new functional MRI techniques in the diagnosis, staging, and followup of gynecological cancer: comparison with PET-CT. Radiol. Res. Pract. 2012; 2012: 219546. doi: 10.1155/2012/219546.

25. Moore W.A., Khatri G., Madhuranthakam A.J., Sims R.D., Pedrosa I. Added value of diffusion-weighted acquisitions in MRI of the abdomen and pelvis. AJR Am. J. Roentgenol. 2014; 202(5): 995-1006. doi: 10.2214/AJR.12.9563.

26. Motoshima S., Irie H., Nakazono T., Kamura T., Kudo S. Diffusion-weighted MR imaging in gynecologic cancers. J. Gynecol. Oncol. 2011; 22(4): 275-87. doi: 10.3802/jgo.2011.22.4.275.

27. Punwani S. Diffusion weighted imaging of female pelvic cancers: concepts and clinical applications. Eur. J. Radiol. 2011; 78(1): 21-9. doi: 10.1016/j.ejrad.2010.07.028.

28. Levy A., Medjhoul A., Caramella C., Zareski E., Berges O., Chargari C. et al. Interest of diffusion-weighted echo-planar MR imaging and apparent diffusion coefficient mapping in gynecological malignancies: a review. J. Magn. Reson. Imaging. 2011; 33(5): 1020-7. doi: 10.1002/jmri.22546.

29. Sato K., Yuasa N., Fujita M., Fukushima Y. Clinical application of diffusion-weighted imaging for preoperative differentiation between uterine leiomyoma and leiomyosarcoma. Am. J. Obstet. Gynecol. 2014; 210(4): 368. e1-8. doi: 10.1016/j.ajog.2013.12.028.

30. Busard M.P.H., Mijatovic V., van Kuijk C., Pieters-van den Bos I.C., Hompes P.G., van Waesberghe J.H. Magnetic resonance imaging in the evaluation of (deep infiltrating) endometriosis: the value of diffusion-weighted imaging. J. Magn. Reson. Imaging. 2010; 32(4): 1003-9. doi: 10.1002/jmri.22310.

31. Dunn D.P., Kelsey N.R., Lee K.S., Smith M.P., Mortele K.J. Non-oncologic applications of diffusion-weighted imaging (DWI) in the genitourinary system. Abdom. Imaging. 2015; 40(6): 1645-54. doi: 10.1007/s00261-015-0471-3.

32. Coutinho A.C., Krishnaraj A., Pires C.E., Bittencourt L.K., Guimarães A.R. Pelvic applications of diffusion magnetic resonance images. Magn. Reson. Imaging Clin. North Am. 2011; 19(1): 133-57. doi: 10.1016/j.mric.2010.10.003.

33. Namimoto T., Awai K., Nakaura T., Yanaga Y., Hirai T., Yamashita Y. Role of diffusion-weighted imaging in the diagnosis of gynecological diseases. Eur. Radiol. 2009; 19(3): 745-60. doi: 10.1007/s00330-008-1185-5.

34. Cooper R.A., Carrington B.M., Loncaster J.A., Todd S.M., Davidson S.E., Logue J.P. et al. Tumour oxygenation levels correlate with dynamic contrast-enhanced magnetic resonance imaging parameters in carcinoma of the cervix. Radiother. Oncol. 2000; 57(1): 53-9.

35. Kim C.K., Park S.Y., Park B.K., Park W., Huh S.J. Blood oxygenation level-dependent MR imaging as a predictor of therapeutic response to concurrent chemoradiotherapy in cervical cancer: a preliminary experience. Eur. Radiol. 2014; 24(7): 1514-20. doi: 10.1007/s00330-014-3167-0.

36. Sørensen A., Peters D., Fründ E., Lingman G., Christiansen O., Uldbjerg N. Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level-dependent magnetic resonance imaging (BOLD MRI). Ultrasound Obstet. Gynecol. 2013; 42(3): 310-4. doi: 10.1002/uog.12395.

37. Brown G.G., Clark C., Liu T.T. Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications. J. Int. Neuropsychol. Soc. 2007; 13(3):526-38.

38. Deibler A.R., Pollock J.M., Kraft R.A., Tan H., Burdette J.H., Maldjian J.A. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am. J. Neuroradiol. 2008; 29(7): 1228-34. doi: 10.3174/ajnr.A1030.

39. Deibler A.R., Pollock J.M., Kraft R.A., Tan H., Burdette J.H., Maldjian J.A. Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am. J. Neuroradiol. 2008; 29(8): 1428-35. doi: 10.3174/ajnr.A1034.

40. Noguchi T., Nishihara M., Egashira Y., Azama S., Hirai T., Kitano I. et al. Arterial spin-labeling MR imaging of cerebral hemorrhages. Neuroradiology. 2015; 57(11): 1135-44. doi: 10.1007/s00234-015-1574-9.

41. Pollock J.M., Tan H., Kraft R.A., Whitlow C.T., Burdette J.H., Maldjian J.A. Arterial spin-labeled MR perfusion imaging: clinical applications. Magn. Reson. Imaging Clin. North Am. 2009; 17(2): 315-38. doi: 10.1016/j.mric.2009.01.008.

42. Avni R., Raz T., Biton I.E., Kalchenko V., Garbow J.R., Neeman M. Unique in utero identification of fetuses in multifetal mouse pregnancies by placental bidirectional arterial spin labeling MRI. Magn. Reson. Med. 2012; 68(2): 560-70. doi: 10.1002/mrm.23246.

43. Kundu S., Chopra S., Verma A., Mahantshetty U., Engineer R., Shrivastava K. Functional magnetic resonance imaging in cervical cancer: current evidence and future directions. J. Cancer Res. Ther. 2012; 8(1): 11-8. doi: 10.4103/0973-1482.95167.

44. Wu L.M., Xu J.R., Gu H.Y., Hua J., Haacke E.M., Hu J. Predictive value of T2-weighted imaging and contrast-enhanced MR imaging in assessing myometrial invasion in endometrial cancer: a pooled analysis of prospective studies. Eur. Radiol. 2013; 23(2): 435-49. doi: 10.1007/s00330-012-2609-9.

45. Padhani A.R., Husband J.E. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies. Clin. Radiol. 2001; 56(8): 607-20.

46. Punwani S. Contrast enhanced MR imaging of female pelvic cancers: established methods and emerging applications. Eur. J. Radiol. 2011; 78(1): 2-11. doi: 10.1016/j.ejrad.2010.03.010.

47. An Q., Ynag J., Zhu Y. Diffusion weighted imaging and contrast-enhanced magnetic resonance imaging in the evaluation of early stage endometrial cancer. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2012; 34(5): 486-91. doi: 10.3881/j.issn.1000-503X.2012.05.009.

48. Hameeduddin A., Sahdev A. Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging. 2015; 15: 3. doi: 10.1186/s40644-015-0037-1.

49. Sala E., Rockall A., Rangarajan D., Kubik-Huch R.A. The role of dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging in the female pelvis. Eur. J. Radiol. 2010; 76(3): 367-85. doi: 10.1016/j.ejrad.2010.01.026.

50. Wu B., Huang X., Peng W., Gu Y., Yang T., Mao J., Ke G., Wu X. Value of MR diffusion-weighted imaging in diagnosis and outcome prediction for uterine cervical cancer. Zhonghua Zhong Liu Za Zhi. 2014; 36(2):115-9.

51. Tarachkova E.V., Streltsova O.N., Ahverdieva G.I., Bazaeva I.Y., Panov V.O., Tyurin I.E. Methods of radiological diagnosis and assessment of treatment in cancer of the cervix. Gynecologic Oncology. 2014; 3: 32-41. (in Russian)

52. Seki H., Azumi R., Kimura M., Sakai K. Stromal invasion by carcinoma of the cervix: assessment with dynamic MR imaging. AJR Am. J. Roentgenol. 1997; 168(6): 1579-85.

53. Zheng L., Zheng S., Yuan X., Wang X., Zhang Z., Zhang G. Comparison of dynamic contrast-enhanced magnetic resonance imaging with T2-weighted imaging for preoperative staging of early endometrial carcinoma. Onco. Targets. Ther. 2015; 8: 1743-51. doi: 10.2147/OTT.S86519.

54. Bychenko V.G., Akinfiev D.M., Stepanov A.V., Kurashvili Yu.B., Kokov L.S., Gailish Yu.P., Voevodin S.M. Use of the results of dynamic contrast-enhanced magnetic resonance imaging for choosing the optimal size of embolic material for the endovascular treatment of uterine myoma. Akusherstvo i Ginekologiya/Obstetrics and gynecology. 2015; 1: 66-71. (in Russian)

55. Makiyan Z. New theory of uterovaginal embryogenesis. Organogenesis. 2016; 12(1): 33-41. doi: 10.1080/15476278.2016.1145317.

56. Makiyan Z. Studies of gonadal sex differentiation. Organogenesis. 2016; 12(1): 42-51. doi: 10.1080/15476278.2016.1145318.

57. Bezhenar V.F., Arnova E.A., Trofimova T.N. MRI diagnosis of anomalies of the müller duct. Radiation diagnostics and therapy. 2012; 1(3): 99-103. (in Russian)

58. Makiyan Z.N., Adamyan L.V., Bychenko V.G., Miroshnikova N.A., Kozlova A.V. Functional magnetic resonance imaging for the determination of blood flow in symmetric uterine anomalies. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2016; (10): 73-9. (in Russian) (in Russian)

59. Kilickesmez O., Bayramoglu S., Inci E., Cimilli T., Kayhan A. Quantitative diffusion-weighted magnetic resonance imaging of normal and diseased uterine zones. Acta Radiol. 2009; 50(3): 340-7. doi: 10.1080/02841850902735858.

60. Wakefield J.C., Downey K., Kyriazi S., deSouza N.M. New MR techniques in gynecologic cancer. AJR Am. J. Roentgenol. 2013; 200(2): 249-60. doi: 10.2214/AJR.12.8932.

Received 01.11.2016

Accepted 11.11.2016

About the Authors

Miroshnikova Nadezhda Andreevna, postgraduate student of the department of operative gynecology, Research Center of Obstetrics, Gynecology and Perinatology.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954387783. E-mail:
Bychenko Vladimir Gennadievich, PhD, head of radiology department, Research Center of Obstetrics, Gynecology and Perinatology.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954387647. E-mail:
Adamyan Leila Vladimirovna, MD, professor, academician of RAS; deputy director on science, head of department of operative gynecology, Research Center of Obstetrics, Gynecology and Perinatology; head the department of reproductive medicine and surgery, faculty of postgraduate education, Moscow State University.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954387783. E-mail:
Kozlova Alina, radiologist, Research Center of Obstetrics, Gynecology and Perinatology.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954387647. E-mail:
Makiyan Zograb, MD, senior researcher of department operative gynecology, Research Center of Obstetrics, Gynecology and Perinatology.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954387783. E-mail:

For citations: Miroshnikova N.A., Bychenko V.G., Adamyan L.V., Kozlova A.V.,
Makiyan Z.N. Functional magnetic resonance imaging in gynecology.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (5): 16-22. (in Russian)

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.