Pathological placentation and prediction of preeclampsia and intrauterine growth restriction in the first trimester

Kholin A.M., Khodzhaeva Z.S., Gus A.I.

National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia
Objective. To generalize an update on the echographic, biochemical, and molecular genetic markers of pathological placentation associated with the prediction of preeclampsia (PE) and intrauterine growth restriction (IUGR) in the first trimester of pregnancy.
Material and methods. There are the data of clinical trials and the meta-analyses of randomized clinical trials published in the past 15 years.
Results. Placenta is a multi-functional organ that regulates the key aspects of pregnancy maintenance and fetal development. Consideration is given to the issues of early prediction of PE and IUGR in the evaluation of the placenta with uterine artery Doppler studies, 3D power Doppler angiography, and placental biomarkers. There have been publications on a lot of multiparameter algorithms to predicting PE and IUGR in the first trimester, some of them are validated in prospective studies. There is evidence for the effectiveness of programs for the prediction and prevention of PE in the first trimester with 62 and 82% decreases in the rate of premature and early PE, respectively. The screening tools for IUGR are less perfect and require further investigation. There is a need for further clinical trials evaluating the function of the placenta and for definition of its phenotypes within the syndromes of PE and IUGR for prospective trials to confirm the effectiveness of predictive models and therapeutic interventions.
Conclusion. There is substantial progress in the development of prognostic and prophylactic strategies, beginning from the first trimester, which can reduce the prevalence of PE and IUGR at an early stage. A better understanding of placentation processes can contribute to the emergence of new prognostic markers and to the improvement of strategies for predicting adverse pregnancy outcomes associated with placental dysfunction.

Keywords

preeclampsia
intrauterine growth restriction
prediction
first-trimester prenatal screening
prevention
biomarkers
uterine artery Doppler study
3D power Doppler angiography
mean blood pressure

References

1. Guttmacher A.E., Spong C.Y. The human placenta project: it’s time for real time. Am. J. Obstet. Gynecol. 2015; 213(4, Suppl.): S3-5.

2. Lees C., Marlow N., Arabin B., Bilardo C.M., Brezinka C., Derks J.B. et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet. Gynecol. 2013; 42(4): 400-8.

3. Стрижаков А.Н., Игнатко И.В., Давыдов А.И., Тимохина Т.Ф., Карданова М.А., Мирющенко М.М. Прогнозирование и ранняя диагностика синдрома задержки роста плода. Вопросы гинекологии, акушерства и перинатологии. 2014; 13(4): 5-11. [Strizhakov A.N., Ignatko I.V., Davydov A.I., Timokhina T.F., Kardanova M.A., Miryushchenko M.M. Prediction and early diagnosis of fetal growth retardation syndrome. Voprosyi ginekologii, akusherstva i perinatologii. 2014; 13(4): 5-11. (in Russian)]

4. Anderson N.H., Sadler L.C., McKinlay C.J.D., McCowan L.M.E. INTERGROWTH-21st vs customized birthweight standards for identification of perinatal mortality and morbidity. Am. J. Obstet. Gynecol. 2016; 214(4): 509. e1-509. e7.

5. Stevens W., Shih T., Incerti D., Ton T.G.N., Lee H.C., Peneva D. et al. Short-term costs of preeclampsia to the United States health care system. Am. J. Obstet. Gynecol. 2017; 217(3): 237-48. e16.

6. Knight M., Kenyon S., Brocklehurst P., Neilson J., Shakespeare J., Kurinczuk J.J., eds.; on behalf of MBRRACE-UK. Saving Lives, Improving Mothers’ Care – Lessons learned to inform future maternity care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2009-12. Oxford: National Perinatal Epidemiology Unit, University of Oxford; 2014.

7. Савельева Г.М., Шалина Р.И., Курцер М.А., Штабницкий А.М., Куртенок Н.В., Коновалова О.В. Эклампсия в современном акушерстве. Акушерство и гинекология. 2010; 6: 4-9. [Savelyeva G.M., Shalina R.I., Kurtser M.A., Shabnitsky A.M., Kurtenok N.V., Konovalova O.V. Eclampsia in modern obstetrics. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2010; 6: 4-9. (in Russian)]

8. Шувалова М.П., Фролова О.Г., Ратушняк С.С., Гребенник Т.К., Гусева Е.В. Преэклампсия и эклампсия как причина материнской смертности. Акушерство и гинекология. 2014; 8: 81-7. [Shuvalova M.P., Frolova O.G., Ratushnyak S.S., Grebennik T.K., Guseva E.V. Preeclampsia and eclampsia as a cause of maternal death. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2014; 8: 81-7. (in Russian)]

9. Villar J., Giuliani F., Bhutta Z.A., Bertino E., Ohuma E.O., Ismail L.C. et al. Postnatal growth standards for preterm infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21(st) Project. Lancet Glob. Health. 2015; 3(11): e681-91.

10. Crovetto F., Triunfo S., Crispi F., Rodriguez-Sureda V., Roma E., Dominguez C. et al. First-trimester screening with specific algorithms for early- and late-onset fetal growth restriction. Ultrasound Obstet. Gynecol. 2016;48(3): 340-8.

11. Ilekis J.V., Tsilou E., Fisher S., Abrahams V.M., Soares M.J., Cross J.C. et al. Placental origins of adverse pregnancy outcomes: potential molecular targets: an Executive Workshop Summary of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Am. J. Obstet. Gynecol. 2016; 215(1, Suppl.): S1-46.

12. Brosens I., Pijnenborg R., Vercruysse L., Romero R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 2011; 204(3): 193-201.

13. Chaiworapongsa T., Chaemsaithong P., Yeo L., Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat. Rev. Nephrol. 2014; 10(8): 466-80.

14. Redman C.W., Sargent I.L. Latest advances in understanding preeclampsia. Science. 2005; 308(5728): 1592-4.

15. von Dadelszen P., Magee L.A., Roberts J.M. Subclassification of preeclampsia. Hypertens. Pregnancy. 2003; 22(2): 143-8.

16. Ogge G., Chaiworapongsa T., Romero R., Hussein Y., Kusanovic J.P., Yeo L. et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J. Perinat. Med. 2011; 39(6): 641-52.

17. Ghidini A., Gratacos E. Can prenatal screening reduce the adverse obstetric outcomes related to abnormal placentation? Prenat. Diagn. 2014;34(7): 613-7.

18. Wright D., Akolekar R., Syngelaki A., Poon L.C., Nicolaides K.H. A competing risks model in early screening for preeclampsia. Fetal Diagn. Ther. 2012; 32(3): 171-8.

19. Rolnik D.L., Wright D., Poon L.C., O’Gorman N., Syngelaki A., de Paco Matallana C. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 2017; 377(7): 613-22.

20. Poon L.C., Karagiannis G., Leal A., Romero X.C., Nicolaides K.H. Hypertensive disorders in pregnancy: screening by uterine artery Doppler imaging and blood pressure at 11-13 weeks. Ultrasound Obstet. Gynecol. 2009; 34(5): 497-502.

21. Demers S., Bujold E., Arenas E., Castro A., Nicolaides K.H. Prediction of recurrent preeclampsia using first-trimester uterine artery Doppler. Am. J. Perinatol. 2014; 31(2): 99-104.

22. Velauthar L., Plana M.N., Kalidindi M., Zamora J., Thilaganathan B., Illanes S.E. et al. First-trimester uterine artery Doppler and adverse pregnancy outcome: a meta-analysis involving 55,974 women. Ultrasound Obstet. Gynecol. 2014; 43(5): 500-7.

23. Hata T., Tanaka H., Noguchi J., Hata K. Three-dimensional ultrasound evaluation of the placenta. Placenta. 2011; 32(2): 105-15.

24. Yu C.H., Chang C.H., Ko H.C., Chen W.C., Chang F.M. Assessment of placental fractional moving blood volume using quantitative three-dimensional power doppler ultrasound. Ultrasound Med. Biol. 2003; 29(1): 19-23.

25. Odibo A.O., Goetzinger K.R., Huster K.M., Christiansen J.K., Odibo L., Tuuli M.G. Placental volume and vascular flow assessed by 3D power Doppler and adverse pregnancy outcomes. Placenta. 2011; 32(3): 230-4.

26. Noguchi J., Hata K., Tanaka H., Hata T. Placental vascular sonobiopsy using three-dimensional power Doppler ultrasound in normal and growth restricted fetuses. Placenta. 2009; 30(5): 391-7.

27. Dar P., Gebb J., Reimers L., Bernstein P.S., Chazotte C., Merkatz I.R. First-trimester 3-dimensional power Doppler of the uteroplacental circulation space: a potential screening method for preeclampsia. Am. J. Obstet. Gynecol. 2010; 203(3): 238. e1-7.

28. Pomorski M., Zimmer M., Florjanski J., Michniewicz J., Wiatrowski A., Fuchs T., Milnerowicz-Nabzdyk E. Comparative analysis of placental vasculature and placental volume in normal and IUGR pregnancies with the use of three-dimensional Power Doppler. Arch. Gynecol. Obstet. 2012; 285(2): 331-7.

29. Hafner E., Metzenbauer M., Stumpflen I., Waldhor T. Measurement of placental bed vascularization in the first trimester, using 3D-power-Doppler, for the detection of pregnancies at-risk for fetal and maternal complications. Placenta. 2013; 34(10): 892-8.

30. Wright D., Syngelaki A., Bradbury I., Akolekar R., Nicolaides K.H. First-trimester screening for trisomies 21, 18 and 13 by ultrasound and biochemical testing. Fetal Diagn. Ther. 2014; 35(2): 118-26.

31. Poon L.C., Nekrasova E., Anastassopoulos P., Livanos P., Nicolaides K.H. First-trimester maternal serum matrix metalloproteinase-9 (MMP-9) and adverse pregnancy outcome. Prenat. Diagn. 2009; 29(6): 553-9.

32. Taylor B.D., Ness R.B., Klebanoff M.A., Zoh R., Bass D., Hougaard D.M. et al. First and second trimester immune biomarkers in preeclamptic and normotensive women. Pregnancy Hypertens. 2016; 6(4): 388-93.

33. Wölter M., Röwer C., Koy C., Rath W., Pecks U., Glocker M.O. Proteoform profiling of peripheral blood serum proteins from pregnant women provides a molecular IUGR signature. J. Proteomics. 2016; 149: 44-52.

34. Manokhina I., Wilson S.L., Robinson W.P. Noninvasive nucleic acid-based approaches to monitor placental health and predict pregnancy-related complications. Am. J. Obstet. Gynecol. 2015; 213(4, Suppl.): S197-206.

35. Munaut C., Tebache L., Blacher S., Noel A., Nisolle M., Chantraine F. Dysregulated circulating miRNAs in preeclampsia. Biomed. Rep. 2016; 5(6): 686-92.

36. Hromadnikova I., Kotlabova K., Ivankova K., Krofta L. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PloS One. 2017; 12(2): e0171756.

37. O’Gorman N., Wright D., Poon L.C., Rolnik D.L., Syngelaki A., Wright A. et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2017; 49(6): 751-5.

38. Park F.J., Leung C.H., Poon L.C., Williams P.F., Rothwell S.J., Hyett J.A. Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy. Austr. N. Z. J. Obstet. Gynecol. 2013; 53(6): 532-9.

39. Холин А.М., Муминова К.Т., Балашов И.С., Ходжаева З.С., Боровиков П.И., Иванец Т.Ю., Гус А.И. Прогнозирование преэклампсии в первом триместре: валидация алгоритмов скрининга на Российской популяции. Акушерство и гинекология. 2017; 8: 74-84. http://dx.doi.org/10.18565/aig.2017.8.74-84 [Kholin A.M., Muminova K.T., Balashov I.S., Khodzhaeva Z.S., Borovikov P.I., Ivanets T.Yu., Gus A.I. First-trimester prediction of preeclampsia: Validation of screening algorithms in a Russian population. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (8): 74-84. (in Russian) http://dx.doi.org/10.18565/aig.2017.8.74-84]

40. Lisonkova S., Joseph K.S. Incidence of preeclampsia: risk factors and outcomes associated with early- versus late-onset disease. Am. J. Obstet. Gynecol. 2013; 209(6): 544. e1-544. e12.

41. Ferrazzi E. Is it the case to dismiss maternal metabolic syndrome as a key co-factor in pre-eclampsia occurring predominantly late in gestation? Placenta. 2015; 36(4): 467-8.

42. Panagodage S., Yong H.E., Da Silva Costa F., Borg A.J., Kalionis B., Brennecke S.P., Murthi P. Low-dose acetylsalicylic acid treatment modulates the production of cytokines and improves trophoblast function in an in vitro model of early-onset preeclampsia. Am. J. Pathol. 2016; 186(12): 3217-24.

43. Poredos P., Jezovnik M.K. The role of inflammatory biomarkers in the detection and therapy of atherosclerotic disease. Curr. Vasc. Pharmacol. 2016; 14(6):534-46.

44. Poon L.C., Syngelaki A., Akolekar R., Lai J., Nicolaides K.H. Combined screening for preeclampsia and small for gestational age at 11-13 weeks. Fetal Diagn. Ther. 2013; 33(1): 16-27.

45. Triunfo S., Crovetto F., Rodriguez-Sureda V., Scazzocchio E., Crispi F., Dominguez C. et al. Changes in uterine artery Doppler velocimetry and circulating angiogenic factors in the first half of pregnancies delivering a small-for-gestational-age neonate. Ultrasound Obstet. Gynecol. 2017; 49(3): 357-63.

46. Inan C., Varol F.G., Erzincan S.G., Uzun I., Sutcu H., Sayin N.C. Use of prokineticin-1 (PROK1), pregnancy-associated plasma protein A (PAPP-A) and PROK1/PAPP-A ratio to predict adverse pregnancy outcomes in the first trimester: a prospective study. J. Matern. Fetal Neonatal Med. 2017; Jul 16: 1-8.

47. Takenaka S., Ventura W., Sterrantino A.F., Kawashima A., Koide K., Hori K. et al. Prediction of fetal growth restriction by analyzing the messenger RNAs of angiogenic factor in the plasma of pregnant women. Reprod. Sci. (Thousand Oaks, Calif.). 2015; 22(6): 743-9.

48. Farina A. Systematic review on first trimester three-dimensional placental volumetry predicting small for gestational age infants. Prenat. Diagn. 2016; 36(2): 135-41.

49. Gurgel Alves J.A., Maia e Holanda Moura S.B., Araujo Junior E., Tonni G., Martins W.P., Da Silva Costa F. Predicting small for gestational age in the first trimester of pregnancy using maternal ophthalmic artery Doppler indices. J. Matern. Fetal Neonatal Med. 2016; 29(7): 1190-4.

50. Lipa M., Bomba-Opon D., Lipa J., Bartnik P., Bartoszewicz Z., Wielgos M. Lipoxin A4 (LXA4) as a potential first trimester biochemical marker of intrauterine growth disorders. J. Matern. Fetal Neonatal Med. 2017; 30(20): 2495-7.

Received 08.09.2017

Accepted 22.09.2017

About the Authors

Alexey Kholin, M.D., Research Associate, Department of Maternal Fetal Medicine, Department of Imaging, National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russiaю 117997, Russia, Moscow, Ac. Oparina str. 4. E-mail: a_kholin@oparina4.ru
Zulfiya Khodzhaeva, M.D., Ph.D., Professor, Head of Department, Department of Maternal-Fetal Medicine, National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russiaю 117997, Russia, Moscow, Ac. Oparina str. 4. E-mail: z_khodzhaeva@oparina4.ru
Alexander Gus, M.D., Ph.D., Head of Department, Department of Imaging, National Medical Research Center of Obstetrics, Gynecology, and Perinatology named
after Academician V.I. Kulakov, Ministry of Health of Russiaю 117997, Russia, Moscow, Ac. Oparina str. 4. E-mail: a_gus@oparina4.ru

For citations: Kholin A.M., Khodzhaeva Z.S., Gus A.I. Pathological placentation and prediction
of preeclampsia and intrauterine growth restriction in the first trimester.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2018; (5): 12-9. (in Russian)
https://dx.doi.org/10.18565/aig.2018.5.12-19

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.