The concept of epigenetic modifications in fetal metabolic programming

Tezikov Yu.V., Lipatov I.S., Tyutyunnik V.L., Kan N.E., Kurbanova A.M.

1) Samara State Medical University, Ministry of Health of Russia, Samara, Russia; 2) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia

This review presents the issue of fetal metabolic programming within the concept of epigenetic regulation of the genome. The paper discusses the main mechanisms of metabolic programming of the fetus in case of placental insufficiency, impaired energy supply, changes in the formation of the microbiome, somatic pathology and the influence of other factors in terms of epigenetics. The review provides a systematization of the existing knowledge about the role of epigenetic modifications of the genome in the metabolic programming of the fetus and the analysis of their significance in increasing the risk of cardiovascular diseases in the postnatal period. The analysis of the literature revealed that epigenetic mechanisms, such as DNA methylation/demethylation, histone modifications, microRNAs are able to program fetal metabolism due the changes in chromatin organization and DNA availability; fetal metabolism can be programmed under unfavorable intrauterine conditions under the influence of external and internal stimuli. The review shows the possibilities of epigenetic therapy and preventive measures aimed at reducing the burden of non-communicable diseases which are the leading causes of mortality.
Conclusion: When the number of diseases associated with metabolic syndrome steadily increases, epigenetics should be considered as a key factor reflecting the indicators of individual health. It is the fetal period that is fundamental in terms of the possibilities of epigenetic prevention and therapy, making this area promising for further study.

Authors’ contributions: Tezikov Yu.V., Kan N.E. – developing the concept and design of the study; Lipatov I.S., Tyutyunnik V.L., Kurbanova A.M. – search and analysis of the material; Lipatov I.S., Tezikov Yu.V., Kurbanova A.M. – writing the text; Tyutyunnik V.L., Kan N.E. – editing the text.
Conflicts of interest: The authors declare no possible conflicts of interest.
Funding: The research was conducted without additional funding.
For citation:  Tezikov Yu.V., Lipatov I.S., Tyutyunnik V.L., Kan N.E., Kurbanova A.M.
The concept of epigenetic modifications in fetal metabolic programming.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2024; (4): 5-14 (in Russian)
https://dx.doi.org/10.18565/aig.2024.60

Keywords

epigenome
fetal programming
insulin resistance
metabolic syndrome
placental insufficiency
epigenetic modifications
epigenetic therapy

References

  1. Silveira Rossi J.L., Barbalho S.M., Reverete de Araujo R., Bechara M.D., Sloan K.P., Sloan L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022; 38(3): e3502. https://dx.doi.org/10.1002/dmrr.3502.
  2. World Obesity Federation, World Obesity Atlas 2023. 232 р. Available at: https://data.worldobesity.org/publications/?cat=19
  3. Петров Ю.А., Купина А.Д. Фетальное программирование – способ предупреждения заболеваний во взрослом возрасте. Медицинский совет. 2020; 13: 50-6. [Petrov Yu.A., Kupina A.D. Fetal programming is a way to prevent diseasesin adulthood. Medical Council. 2020; 13:50-6. (in Russian)]. https://dx.doi.org/10.21518/2079-701X-2020-13-50-56.
  4. Долгов А.А., Овчинникова П.П., Филоненко Е.В. Эпигенетика: перспективные открытия для медицины. Бюллетень медицинских Интернет-конференций. 2019; 6:23-5. [Dolgov A.A., Ovchinnikova P.P., Filonenko E.V. Epigenetics: promising discoveries for medicine. Bulletin of Medical Internet Conferences. 2019; 6: 23-5. (in Russian)].
  5. Радзинский В.Е., Боташева Т.Л., Папышева О.В., Волкова Н.И., Котайш Г.А., Палиева Н.В. Ожирение. Диабет. Беременность. Версии и контраверсии. Клинические практики. Перспективы. М.: ГЭОТАР-Медиа; 2020. 528 с. [Radzinsky V.E., Botasheva T.L., Pupysheva O.V., Volkova N.I., Kotaish G.A., Palieva N.V. Obesity. Diabetes. Pregnancy. Versions and contraversions. Clinical practices. Prospects. Moscow: GEOTAR-Media; 2020. 528p. (in Russian)]. https://dx.doi.org/10.33029/9704-5442-8-OBE-2020-1-528.
  6. Липатов И.С., Тезиков Ю.В., Шмаков Р.Г., Азаматов А.Р., Мартынова Н.В. Беременность – естественная модель метаболического синдрома: результаты динамического исследования физиологической гестации. Акушерство и гинекология. 2020; 9: 88-96. [Lipatov I.S., Tezikov Yu.V., Shmakov R.G., Azamatov A.R., Martynova N.V. Pregnancy as a natural model of metabolic syndrome: results of a dynamic study of normal gestation. Obstetrics and Gynecology. 2020; (9): 88-96. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.9.88-96.
  7. Hufnagel A., Dearden L., Fernandez-Twinn D.S., Ozanne S.E. Programming of cardiometabolic health: the role of maternal and fetal hyperinsulinaemia. J. Endocrinol. 2022; 253(2): R47-R63. https://dx.doi.org/10.1530/JOE-21-0332.
  8. Reynolds L.P., Borowicz P.P., Caton J.S., Crouse M.S., Dahlen C.R., Ward A.K. Developmental programming of fetal growth and development. Vet. Clin. North Am. Food Anim. Pract. 2019; 35(2): 229-47. https://dx.doi.org/10.1016/j.cvfa.2019.02.006.
  9. Persson P.B., Persson A.B. Foetal programming. Acta Physiol. (Oxf). 2019; 227(4): e13403. https://dx.doi.org/10.1111/apha.13403.
  10. Липатов И.С., Тезиков Ю.В., Азаматов А.Р., Шмаков Р.Г. Общность клинических проявлений преэклампсии и метаболическогосиндрома: поиск обоснования. Акушерство и гинекология. 2021; 3: 81-9. [Lipatov I.S., Tezikov Yu.V., Azamatov A.R., Shmakov R.G. Identity of preeclampsia and metabolic syndrome clinical manifestations: searching for substantiation. Obstetrics and Gynecology. 2021; (3): 81-9. (in Russian)]. https://dx.doi.org/10.18565/aig.2021.3.81-89.
  11. Муковникова Е.В., Оразмурадов А.А., Костин И.Н. Беременность, роды и перинатальные исходы при метаболическом синдроме. Акушерство и гинекология: новости, мнения, обучение. 2024; 12 (Приложение): 128-33. [Mukovnikova E.V., Orazmuradov A.A., Kostin I.N. Pregnancy, child birth and perinatal out comesin metabolic syndrome. Obstetrics and Gynecology: News, Opinions, Training. 2024; 12(Suppl.): 128-33. (in Russian)]. https://dx.doi.org/10.33029/2303-9698-2024-12-suppl-128-133.
  12. Чабанова Н.Б., Василькова Т.Н., Матаев С.И., Полякова В.А. Значение ожирения в фетальном программировании хронических заболеваний. Современные проблемы науки и образования. 2017; 2: 15-7. [Chabanova N.B., Vasilkova T.N., Mataev S.I., Polyakova V.A. The importance of obesity in fetal programming of chronic diseases. Modern problems of science and education. 2017; 2: 15-7. (in Russian)].
  13. Джобава Э.М. Фетальное программирование. Акушерство и гинекология. 2018; 3: 10-5. [Dzhobava E.M. Fetal programming. Obstetrics and Gynecology. 2018; (3): 10-5. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.3.10-15.
  14. Harary D., Akinyemi A., Charron M.J., Fuloria M. Fetal growth and intrauterine epigenetic programming of obesity and cardiometabolic disease. Neoreviews. 2022; 23(6): e363-e372. https://dx.doi.org/10.1542/neo.23-6-e363.
  15. Rasmussen J.M., Thompson P.M., Entringer S., Buss C., Wadhwa P.D. Fetal programming of human energy homeostasis brain networks: Issues and considerations. Obes. Rev. 2022; 23(3): e13392. https://dx.doi.org/10.1111/obr.13392.
  16. Солдатова Е.Е., Кан Н.Е., Тютюнник В.Л., Волочаева М.В. Задержка роста плода с позиции фетального программирования. Акушерство и гинекология. 2022; 8: 5-10. [Soldatova E.E., Kan N.E., Tyutyunnik V.L., Volochaeva M.V. Fetal growth retardation in the context of fetal programming. Obstetrics and Gynecology. 2022; (8): 5-10. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.8.5-10.
  17. Климов Л.Я., Атанесян Р.А., Верисокина Н.Е., Шанина С.В., Долбня С.В., Курьянинова В.А. Роль эндокринной патологии матери в патогенезе нарушений внутриутробного и постнатального развития детей: современный взгляд в рамках концепции пищевого программирования. Медицинский совет. 2018; 17: 38-46. [Klimov L.Ya., Atanesyan R.A., Veresokina N.E., Shanina S.V., Dolbnya S.V., Kuryaninova V.A. The role of maternal endocrine pathology in the pathogenesis of disorders of intrauterine and postnatal development of children: a modern view within the framework of the concept of food programming. Medical Council. 2018; (17): 38-46. (in Russian)]. https://dx.doi.org/10.21518/2079-701X-2018-17-38-46.
  18. Fernandez-Twinn D.S., Hjort L., Novakovic B., Ozanne S.E., Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia. 2019; 62(10): 1789-801. https://dx.doi.org/10.1007/s00125-019-4951-9.
  19. Тезиков Ю.В., Липатов И.С., Фролова Н.А., Кутузова О.А., Приходько А.В., Рябова С.А. Информативность предикторов больших акушерских синдромов у беременных с эмбриоплацентарной дисфункцией. Аспирантский вестник Поволжья. 2015; 5-6: 48-55. [Tezikov Yu.V., Lipatov I.S., Frolova N.A., Kutuzova O.A., Prikhodko A.V., Ryabova S.A. Informative predictors of major obstetrical syndrome sin pregnant women with embryoplacental dysfunction. Aspirantskiy Vestnik Povolzhiya. 2015; 5-6: 48-55. (in Russian)].
  20. Liu L., Wen Y., Ni Q., Chen L., Wang H. Prenatal ethanol exposure and changes in fetal neuroendocrine metabolic programming. Biol. Res. 2023; 56(1): 61. https://dx.doi.org/10.1186/s40659-023-00473-y.
  21. Moreno-Fernandez J., Ochoa J.J., Lopez-Frias M., Diaz-Castro J. Impact of early nutrition, physical activity and sleep on the fetal programming of disease in the pregnancy: a narrative review. Nutrients. 2020; 12(12):3900. https://dx.doi.org/10.3390/nu12123900.
  22. Аллахяров Д.З., Петров Ю.А., Палиева Н.В. Современные аспекты прегравидарной подготовки пациенток с метаболическим синдромом. Главный врач Юга России. 2023; 1(87): 29-32. [Allakhyarov D.Z., Petrov Yu.A., Palieva N.V. Modern aspects of pre-gravidar training of patients with metabolic syndrome. The Chief Physician of the South of Russia. 2023; 1(87): 29-32. (in Russian)].
  23. Bano S., Agrawal A., Asnani M., Das V., Singh R., Pandey A. et al. Correlation of insulin resistance in pregnancy with obstetric outcome. J. Obstet. Gynaecol. India. 2021; 71(5):495-500. https://dx.doi.org/10.1007/s13224-021-01426-9.
  24. Гуменюк Е.Г., Ившин А.А., Светова К.С. Задержка роста плода как предиктор здоровья на протяжении будущей жизни. Акушерство и гинекология. 2024; 3: 5-12. [Gumeniuk E.G., Ivshin A.A., Svetova K.S. Fetal growth retardation as a predictor of health during the future life. Obstetrics and Gynecology. 2024; (3): 5-12. (in Russian)].https://dx.doi.org/10.18565/aig.2023.277.
  25. Тезиков Ю.В., Липатов И.С., Рябова С.А., Тезикова Т.А., Ефимова Л.В., Ракитина В.Н. Перинатальная хрономедицина: биоритмостаз плода при неосложненной беременности и плацентарной недостаточности. Известия Самарского научного центра Российской академии наук. 2014; 16(5-4): 1467-70. [Tezikov Yu.V., Lipatov I.S., Ryabova S.A., Tezikova T.A., Efimova L.V., Rakitina V.N. Perinatal chronomedicine: fetal biorhythmostasis in uncomplicated pregnancy and placental insufficiency. Izvestiya of Samara Scientific Center of the Russian Academy of Sciences. 2014; 16(5-4): 1467-70. (in Russian)].
  26. Ходжаева З.С., Снеткова Н.В., Муминова К.Т., Горина К.А., Абрамова М.Е., Есаян Р.М. Особенности течения беременности у женщин с гестационным сахарным диабетом. Акушерство и гинекология. 2020; 7: 47-52. [Khodzhaeva Z.S., Snetkova N.V., Muminova K.T., Gorina K.A., Abramova M.E., Esayan R.M. Clinical characteristics of pregnancy in women with gestational diabetes mellitus. Obstetrics and Gynecology. 2020; (7): 47-52. (in Russian)]. https://dx.doi.org/10.18565/aig.2020.7.47-52.
  27. Lesseur C., Chen J. Adverse maternal metabolic intrauterine environment and placental epigenetics: implications for fetal metabolic programming. Curr. Environ. Health Rep. 2018; 5(4): 531-43. https://dx.doi.org/10.1007/s40572-018-0217-9.
  28. Папышева О.В., Харитонова Л.А., Котайш Г.А. Состояние липидного и углеводного обменов у детей, родившихся от матерей с гестационным сахарным диабетом. Экспериментальная и клиническая гастроэнтерология. 2019; 1: 137-44. [Papysheva O.V., Kharitonova L.A., Kotaish G.A. The state of lipid and carbohydrate metabolism in children born to mothers with gestational diabetes mellitus. Experimental and Clinical Gastroenterology. 2019; 1: 137-44. (in Russian)]. https://dx.doi.org/10.31146/1682-8658-ecg-161-1-137-144.
  29. Аракелян Г.А., Оразмурадов А.А., Маяцкая Т.А., Бекбаева И.В., Котайш Г.А. Особенности новорожденных от матерей с гестационным сахарным диабетом и прегестационным ожирением. Акушерство и гинекология: новости, мнения, обучение. 2020; 8(3) Приложение: 24-9. [Arakelyan G.A., Orazmuradov A.A., Mayatskaya T.A., Bikbaeva I.V., Kotaish G.A. The condition of newborns fromm others with gestational diabetes mellitus and pregestational obesity. Obstetrics and Gynecology: News, Opinions, Training. 2020; 8(3) Supplement: 24-9. (in Russian)]. https://dx.doi.org/10.24411/2303-9698-2020-13904.
  30. Deodati A., Inzaghi E., Cianfarani S. Epigenetics and in utero acquired predisposition to metabolic disease. Front. Genet. 2020; 29(10): 1270. https://dx.doi.org/10.3389/fgene.2019.01270.
  31. Aldahmash W., Harrath A.H., Aljerian K., Sabr Y., Alwasel S. Expression of glucose transporters 1 and 3 in the placenta of pregnant women with gestational diabetes mellitus. Life (Basel). 2023; 13(4): 993. https://dx.doi.org/10.3390/life13040993.
  32. Kelly A.C., Powell T.L., Jansson T. Placental function in maternal obesity. Clin. Sci. (Lond). 2020; 134(8): 961-84. https://dx.doi.org/10.1042/CS20190266.
  33. Петренко Ю.В., Прокопьева Н.Э., Ковалева В.В., Ковалева В.В. Особенности адипонектина в системе мать-плацента-плод. Университетский терапевтический вестник. 2023; 5(3): 41-9. [Petrenko Yu.V., Prokopyeva N.E., Kovaleva V.V., Kovaleva V.V. Features of adiponectin at the mother-placenta-fetus system. University Therapeutic Journal. 2023; 5(3): 41-9 (in Russian)]. https://dx.doi.org/10.56871/UTJ.2023.42.20.004.
  34. Евсюкова И.И. Молекулярные механизмы функционирования системы «мать-плацента-плод» при ожирении и гестационном сахарном диабете. Молекулярная медицина. 2020; 18(1): 11-5. [Evsyukova I.I. Molecular mechanisms of functioning of the «mother-placenta-fetus» system in obesity and gestational diabetes mellitus. Molecular Medicine. 2020; 18(1): 11-5. (in Russian)]. https://doi.org/10.29296/ 24999490-2020-01-02.
  35. Тезиков Ю.В., Липатов И.С. Преэклампсия: патогенез, риск-стратификация, диагностика, профилактика. Самара: Издательско-полиграфический комплекс «Право»; 2023. 399с. [Tezikov Yu.V., Lipatov I.S. Preeclampsia: pathogenesis, risk stratification, diagnosis, prevention. Samara: Publishing and printing complex «Pravo»; 2023. 399p. (in Russian)].
  36. Hanson M.A., Poston L., Gluckman P.D. DOHaD – the challenge of translating the science to polcy. J. Dev. Orig. Health Dis. 2019; 10(3): 263-7. https://dx.doi.org/10.1017/S2040174419000205.
  37. Di Cesare M., Sorić M., Bovet P., Miranda J.J., Bhutta Z., Stevens G.A. et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med. 2019; 17(1): 212. https://dx.doi.org/10.1186/s12916-019-1449-8.
  38. Li L., Maire C.L., Bilenky M., Carles A., Heravi-Moussavi A., Hong C. et al. Epigenomic programming in early fetal brain development. Epigenomics. 2020; 12(12): 1053-70. https://dx.doi.org/10.2217/epi-2019-0319.
  39. Agay-Shay K., Martinez D., Valvi D., Garcia-Esteban R., Basagaña D., Robinson O. et al. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ. Health Perspect. 2022; 123(10): 1030-7. https://doi.org/10.1289/ehp.1409049.
  40. Stanford K.I., Rasmussen M., Baer L.A., Lehnig A.C., Rowland L.A., White J.D. et al. Paternal exercise improves glucose metabolism in adult offspring. Diabetes. 2018; 67(12): 2530-40. https://dx.doi.org/10.2337/db18-0667.
  41. Silva L., Plösch T., Toledo F., Faas M., Sobrevia L. Adenosine kinase and cardiovascular fetal programming in gestational diabetes mellitus. Biochim. Biophys. Acta Mol. Basis Dis. 2020; 1866(2): 165397. https://dx.doi.org/10.1016/j.bbadis.2019.01.023.
  42. Schaefer-Graf U., Napoli A., Nolan C.J.; Diabetic Pregnancy Study Group. Diabetes in pregnancy: a new decade of challenges ahead. Diabetologia. 2018; 61(5): 1012-21. https://dx.doi.org/10.1007/s00125-018-4545-y.
  43. Main A.M., Gillberg L., Jacobsen A.L., Nilsson E., Gjesing A.P., Hansen T. et al. DNA methylation and gene expression of HIF3A: cross-tissue validation and associations with BMI and insulin resistance. Clin. Epigenetics. 2016; 8(1): 89. https://dx.doi.org/10.1186/s13148-016-0258-6.
  44. Литяева Л.А., Ковалева О.В. Роль питания и кишечной микробиоты беременной женщины в программировании здоровья ребенка. Детские инфекции. 2017; 16(2): 40-4. [Lityaeva L.A., Kovaleva O.V. The role of nutrition and intestinal microbiota of a pregnant woman in programming child health. Childhood Infections. 2017; 16(2): 40-4. (in Russian)]. https://dx.doi.org/10. 22627/2072-8107-2017-16-2-40-44.
  45. Айтбаев К.А., Муркамилов И.Т., Фомин В.В., Муркамилова Ж.А. Влияние кишечной микробиоты на эпигенетику: механизмы, роль в развитии заболеваний, диагностический и терапевтический потенциал. Экспериментальная и клиническая гастроэнтерология. 2018; 154(6): 122-9. [Aitbaev K.A., Murkamilov I.T., Fomin V.V., Murkamilova Zh.A. Influence of gut microbiota on epigenetics: mechanisms, role in the development of diseases, diagnostic and therapeutic potential. Experimental and Clinical Gastroenterology. 2018; 154(6): 122-9. (in Russian)].
  46. Brial F., Le Lay A., Dumas M.E., Gauguier D. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell. Mol. Life Sci. 2018; 75(21): 3977-90. https://dx.doi.org/10.1007/s00018-018-2901-1.
  47. Conradt E., Adkins D.E., Crowell S.E, Raby K.L., Diamond L.M., Ellis B. Incorporating epigenetic mechanisms to advance fetal programming theories. Dev. Psychopathol. 2018; 30(3): 807-24. https://dx.doi.org/10.1017/S0954579418000469.
  48. Zmora N., Bashiardes S., Levy M., Elinav E. The role of the immune system in metabolic health and disease. Cell. Metab. 2017; 25(3): 506-21. https://dx.doi.org/10.1016/j.cmet.2017.02.006.
  49. Стрижаков А.Н., Игнатко И.В., Байбулатова Ш.Ш., Богомазова И.М. Антенатальное метаболическое и эндокринное программирование при беременности высокого риска. Акушерство и гинекология. 2016; 10: 39-47. [Strizhakov A.N., Ignatko I.V., Baibulatova Sh.Sh., Bogomazova I.M. Antenatal metabolic and endocrine programming for high-risk pregnancy. Obstetrics and Gynecology. 2016; (10): 39-47. (in Russian)]. https://dx.doi.org/10.18565/aig.2016.10.39-47.
  50. Priviero F. Epigenetic modifications and fetal programming: molecular mechanisms to control hypertension inheritance. Biochem. Pharmacol. 2023; 208: 115412. https://dx.doi.org/10.1016/j.bcp.2023.115412.
  51. Dahlen C.R., Amat S., Caton J.S., Crouse M.S., Diniz W.J.D.S., Reynolds L.P. Paternal effects on fetal programming. Anim. Reprod. 2023; 20(2): e20230076. https://dx.doi.org/10.1590/1984-3143-AR2023-0076.
  52. Радзинский В.Е., Князев С.А., Костин И.Н., ред. Предиктивное акушерство. М.: Status Praesens; 2021. 520с. [Radzinsky V.E., Knyazev S.A., Kostin I.N., eds. Predictive obstetrics. Moscow: Status Praesens; 2021. 520p. (in Russian)].
  53. Серегина Д.С., Николаенков И.П., Кузьминых Т.У. Ожирение – ведущее патогенетическое звено патологического течения беременностии родов. Журнал акушерства и женских болезней. 2020; 69(2): 73-82. [Seryogina D.S., Nikolayenkov I.P., Kuzminykh T.U. Obesity represents a strong pathogenetic link with the pathology of pregnancy and childbirth. Journal of Obstetrics and Women's Diseases. 2020; 69(2): 73-82. (in Russian)]. https://doi.org/10.17816/JOwD69273-82.
  54. Bar J., Weiner E., Levy M., Gilboa Y. The thrifty phenotype hypothesis: The association between ultrasound and Doppler studies in fetal growth restriction and the development of adult disease. Am. J. Obstet. Gynecol. MFM. 2021; 3(6): 100473. https://dx.doi.org/10.1016/j.ajogmf.2021.100473.
  55. Kusuyama J., Makarewicz N.S., Albertson B.G., Alves-Wagner A.B., Conlin R.H., Prince N.B. et al. Maternal exercise-induced SOD3 reverses the deleterious effects of maternal high-fat diet on offspring metabolism through stabilization of H3K4me3 and protection against WDR82 carbonylation. Diabetes. 2022; 71(6): 1170-81. https://dx.doi.org/10.2337/db21-0706.
  56. Mozaffarian D. Perspective: obesity-an unexplained epidemic. Am. J. Clin. Nutr. 2022; 115(6): 1445-50. https://dx.doi.org/10.1093/ajcn/nqac075.
  57. Радзинский В.Е., Оразмурадова А.А. Беременность ранних сроков. От прегравидарной подготовки к здоровой гестации. Москва: Status Praesens; 2018. 798с. [Radzinsky V.E., Orazmuradova A.A. Early pregnancy. From pre-pregnancy preparation to healthy gestation. Moscow: Status Praesens; 2018. 798p. (in Russian)].

Received 18.03.2024

Accepted 22.04.2024

About the Authors

Yurii V. Tezikov, Professor, Dr. Med. Sci., Head of the Department of Obstetrics and Gynecology of the Institute of Clinical Medicine, Samara State Medical University,
Ministry of Health of Russia, 443099, Russia, Samara, Chapaevskaya str., 89, +7(846)958-24-18, yra.75@inbox.ru, Researcher ID: С-6187-2018, SPIN-код: 2896-6986,
Author ID: 161372, Scopus Author ID: 6603787595, https://orcid.org/0000-0002-8946-501X
Igor S. Lipatov, Professor, Dr. Med. Sci., Professor at the Department of Obstetrics and Gynecology of the Institute of Clinical Medicine, Samara State Medical University, Ministry of Health of Russia, 443099, Russia, Samara, Chapaevskaya str., 89, +7(846)958-24-18, i.lipatoff2012@yandex.ru, Researcher ID: С-5060-2018,
SPIN-код: 9625-2947, Author ID: 161371, Scopus Author ID: 6603787595, https://orcid.org/0000-0001-7277-7431
Victor L. Tyutyunnik, Professor, Dr. Med. Sci., Leading Researcher of the Center for Scientific and Clinical Research, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, +7(903)969-50-41, tioutiounnik@mail.ru, Researcher ID: B-2364-2015, SPIN-код: 1963-1359, Authors ID: 213217, Scopus Author ID: 56190621500, https://orcid.org/0000-0002-5830-5099
Natalia E. Kan, Professor, Dr. Med. Sci., Deputy Director of Science, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4. +7(926)220-86-55, kan-med@mail.ru, Researcher ID: B-2370-2015,
SPIN-код: 5378-8437, Authors ID: 624900, Scopus Author ID: 57008835600, https://orcid.org/0000-0001-5087-5946
Aminat M. Kurbanova, Assistant at the Department of Obstetrics and Gynecology of the Institute of Clinical Medicine, Samara State Medical University, Ministry of Health
of Russia, 443099, Russia, Samara, Chapaevskaya str., 89, +7(846)958-24-18, aminca.kurbanova@mail.ru, Researcher ID: KEJ-3777-2024, SPIN-код: 6299-0501,
Author ID:1073141, https://orcid.org/0000-0002-5277-0379
Corresponding author: Yurii V. Tezikov, yra.75@inbox.ru

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.