Use of transcriptomic databases for the analysis of pathogenetic factors of endometriosis

Bobrov M.Yu., I. Balashov S., Filippova E.S., Almova I.K., Khilkevich E.G., Pavlovich S.V., Naumov V.A., Borovikov P.I., Sukhikh G.T.

1Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia 2Academicians M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
Background. Molecular mechanisms in the pathogenesis of endometriosis remain inadequately studied, largely determining the lack of highly efficient therapy for this disease. Omix technologies used in the study of endometriosis have recently led to the accumulation of information on a change in the quantity and composition of different classes of molecules in intact and pathologically changed tissues.
Objective. To analyze data sets obtained in different studies.
Subject and methods. Six data sets for mRNA expression and nine ones for miRNA expression in the atopic and ectopic endometrium were analyzed. 79 genes with unidirectional expression changes were selected in most collections and functionally characterized.
Results. Comparison of the lists of differentially expressed genes and microRNAs and evaluation of their possible interactions could identify nine miRNAs that are able to be involved in the regulation of expression of ten genes. Analysis of the processes regulated by the differentially expressed genes revealed a number of cellular functions and intracellular signaling pathways that which have not previously been indicated in endometriosis.
Conclusion. Dysregulation associated with these pathways can make a substantial contribution to the development of this disease.

Keywords

endometriosis
path of intracellular signaling
pathogenesis
microRNA expression
„omix” technologies

References

1. Tosti C. et al. Pathogenetic mechanisms of deep infiltrating endometriosis. Reprod. Sci. 2015; 22(9): 1053-9.

2. Signorile P.G., Baldi A. New evidence in endometriosis. Int. J. Biochem. Cell Biol. 2015; 60: 19-22.

3. Harada T., ed. Endometriosis. Springer; 2014. 475p.

4. Burney R.O. et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007; 148(8): 3814-26.

5. Crispi S. et al. Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects. J. Cell. Physiol. 2013; 228(9):1927-34.

6. Sha G. et al. Differentially expressed genes in human endometrial endothelial cells derived from eutopic endometrium of patients with endometriosis compared with those from patients without endometriosis. Hum. Reprod. 2007; 22(12): 3159-69.

7. Hawkins S.M. et al. Functional microRNA involved in endometriosis. Mol. Endocrinol. 2011; 25(5): 821-32.

8. Eyster K.M. et al. Whole genome deoxyribonucleic acid microarray analysis of gene expression in ectopic versus eutopic endometrium. Fertil. Steril. 2007; 88(6): 1505-33.

9. Hever A. et al. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc. Natl. Acad. Sci. USA. 2007; 104(30): 12451-6.

10. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281-97.

11. Ohlsson Teague E.M.C. et al. MicroRNA-regulated pathways associated with endometriosis. Mol. Endocrinol. 2009; 23(2): 265-75.

12. Filigheddu N. et al. Differential expression of micrornas between eutopic and ectopic endometrium in ovarian endometriosis. J. Biomed. Biotechnol. 2010; 2010: 369549.

13. Braza-Boils A. et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum. Reprod. 2014; 29(5): 978-88.

14. Zhao M. et al. miR-20a contributes to endometriosis by regulating NTN4 expression. Mol. Biol. Rep. 2014; 41(9): 5793-7.

15. Zheng B. et al. The differential expression of microRNA-143,145 in endometriosis. Iran. J. Reprod. Med. 2014; 12(8): 555-60.

16. Graham A., Falcone T., Nothnick W.B. The expression of microRNA-451 in human endometriotic lesions is inversely related to that of macrophage migration inhibitory factor (MIF) and regulates MIF expression and modulation of epithelial cell survival. Hum. Reprod. 2015; 30(3): 642-52.

17. Liu S. et al. Expression of miR-126 and Crk in endometriosis: miR-126 may affect the progression of endometriosis by regulating Crk expression. Arch. Gynecol. Obstet. 2012; 285(4): 1065-72.

18. Saare M. et al. High-throughput sequencing approach uncovers the miRNome of peritoneal endometriotic lesions and adjacent healthy tissues. PLoS One. 2014; 9(11): e112630.

19. Demšar J. et al. Orange: data mining toolbox in python. J. Mach. Learn. Res. 2013; 14: 2349-53.

20. Shannon P. et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-504.

21. Winterhalter C., Widera P., Krasnogor N. JEPETTO: a Cytoscape plugin for gene set enrichment and topological analysis based on interaction networks. Bioinformatics. 2014; 30(7): 1029-30.

22. Dweep H., Gretz N., Sticht C. miRWalk database for miRNA-target interactions. Methods Mol. Biol. 2014; 1182: 289-305.

23. Gómez-Contreras P. et al. Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases. Clin. Exp. Metastasis. 2017; 34(1): 37-49.

24. Phesse T., Flanagan D., Vincan E. Frizzled7: a promising achilles’ heel for targeting the wnt receptor complex to treat cancer. Cancers (Basel). 2016;8(5): 50.

25. Henau O. De et al. Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS One. 2016; 11(10): e0164179.

26. Bathgate R.A.D. et al. Relaxin family peptides and their receptors. Physiol. Rev. 2013; 93(1): 405-80.

27. Boggild S. et al. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol. 2016; 17: 8.

28. Ortiga-Carvalho T.M., Sidhaye A.R., Wondisford F.E. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat. Rev. Endocrinol. 2014; 10(10): 582-91.

29. Ramaiah S. et al. Toll-like receptor and accessory molecule mRNA expression in humans and mice as well as in murine autoimmunity, transient inflammation, and progressive fibrosis. Int. J. Mol. Sci. 2013; 14(7): 13213-30.

30. Montalbano M. et al. Biology and function of glypican-3 as a candidate for early cancerous transformation of hepatocytes in hepatocellular carcinoma (Review). Oncol. Rep. 2017; 37(3): 1291-300.

31. Kang J.M. et al. KIAA1324 suppresses gastric cancer progression by inhibiting the oncoprotein GRP78. Cancer Res. 2015; 75(15): 3087-97.

32. Bürkle B. et al. Spread of endometriosis to pelvic sentinel lymph nodes: gene expression analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013; 169(2): 370-5.

33. Davies L. et al. P53 apoptosis mediator PERP: localization, function and caspase activation in uveal melanoma. J. Cell. Mol. Med. 2009; 13(8b):1995-2007.

34. Constable J.R.L. et al. Amisyn regulates exocytosis and fusion pore stability by both syntaxin-dependent and syntaxin-independent mechanisms. J. Biol. Chem. 2005; 280(36): 31615-23.

35. Lenka G. et al. Identification of methylation-driven, differentially expressed STXBP6 as a novel biomarker in lung adenocarcinoma. Sci. Rep. 2017;7: 42573.

36. Qiu H.-L. et al. High expression of KIF14 is associated with poor prognosis in patients with epithelial ovarian cancer. Eur. Rev. Med. Pharmacol. Sci. 2017; 21(2): 239-45.

37. Singel S.M. et al. KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer. Neoplasia. 2014; 16(3): 247-56. e2.

38. Heo J.-I., Cho J.H., Kim J.-R. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013; 68(8): 914-25.

39. Fu H.-L., Shao L. Silencing of NUF2 inhibits proliferation of human osteosarcoma Saos-2 cells. Eur. Rev. Med. Pharmacol. Sci. 2016; 20(6): 1071-9.

40. Katkoori V.R. et al. Prognostic significance and gene expression profiles of p53 mutations in microsatellite-stable stage III colorectal adenocarcinomas. PLoS One. 2012; 7(1): e30020.

41. Li S. et al. SHP2 positively regulates TGFβ1-induced epithelial-mesenchymal transition modulated by its novel interacting protein Hook1. J. Biol. Chem. 2014; 289(49): 34152-60.

42. Maldonado-Báez L. et al. Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1. J. Cell Biol. 2013; 201(2): 233-47.

43. Zhang W. et al. Overexpression of myosin is associated with the development of uterine myoma. J. Obstet. Gynaecol. Res. 2014; 40(9): 2051-7.

44. Liu Y. et al. Loss of N -acetylgalactosaminyltransferase-4 orchestrates oncogenic microRNA-9 in hepatocellular carcinoma. J. Biol. Chem. 2017; 292(8): 3186-200.

45. Iozzo R.V., ed. Proteoglycans: structure, biology and molecular interactions. New York: Marcel Dekker Inc.; 2000.

46. Berardo P.T. et al. Composition of sulfated glycosaminoglycans and immunodistribution of chondroitin sulfate in deeply infiltrating endometriosis affecting the rectosigmoid. Micron. 2009; 40(5-6): 639-45.

47. Monsivais D. et al. Activated glucocorticoid and eicosanoid pathways in endometriosis. Fertil. Steril. 2012; 98(1): 117-25.

48. Bao Y. et al. Tumor suppressor PRSS8 targets Sphk1/S1P/Stat3/Akt signaling in colorectal cancer. Oncotarget. 2016; 7(18): 26780-92.

49. Wang J. et al. VEGF expression is augmented by hypoxia‑induced PGIS in human fibroblasts. Int. J. Oncol. 2013; 43(3): 746-54.

50. Murray M. CYP2J2 – regulation, function and polymorphism. Drug Metab. Rev. 2016; 48(3): 351-68.

51. Edqvist P.-H.D. et al. Loss of ASRGL1 expression is an independent biomarker for disease-specific survival in endometrioid endometrial carcinoma. Gynecol. Oncol. 2015; 137(3): 529-37.

52. Adeva-Andany M.M. et al. Liver glucose metabolism in humans. Biosci. Rep. 2016; 36(6).

53. Marttila-Ichihara F. et al. Amine oxidase activity regulates the development of pulmonary fibrosis. FASEB J. 2017; Mar 1.

54. Alfarouk K.O. Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J. Enzyme Inhib. Med. Chem. 2016; 31(6): 859-66.

55. Xu Y. Effect of estrogen sulfation by SULT1E1 and PAPSS on the development of estrogen-dependent cancers. Cancer Sci. 2012; 103(6): 1000-9.

56. Gupta A. et al. Cell cycle- and cancer-associated gene networks activated by Dsg2: evidence of cystatin A deregulation and a potential role in cell-cell adhesion. PLoS One. 2015; 10(3): e0120091.

57. Zhao Q. et al. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma. Clin. Transl. Oncol. 2015; 17(8): 620-31.

58. Calvo F. et al. RasGRF suppresses Cdc42-mediated tumour cell movement, cytoskeletal dynamics and transformation. Nat. Cell Biol. 2011; 13(7): 819-26.

59. Byrne J.A. et al. Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene? Tumor Biol. 2014; 35(8):7369-82.

60. Meunier D. et al. Expression analysis of proline rich 15 (Prr15) in mouse and human gastrointestinal tumors. Mol. Carcinog. 2011; 50(1): 8-15.

61. Rowther F.B. et al. Cyclic nucleotide phosphodiesterase-1C ( PDE1C ) drives cell proliferation, migration and invasion in glioblastoma multiforme cells in vitro. Mol. Carcinog. 2016; 55(3): 268-79.

62. Han B., Poppinga W.J., Schmidt M. Scaffolding during the cell cycle by A-kinase anchoring proteins. Pflügers Arch. - Eur. J. Physiol. 2015;467(12): 2401-11.

63. Guimarães-Young A. et al. Conditional deletion of Sox17 reveals complex effects on uterine adenogenesis and function. Dev. Biol. 2016;414(2): 219-27.

64. Mahajan N. Signatures of prostate-derived Ets factor (PDEF) in cancer. Tumor Biol. 2016; 37(11): 14335-40.

65. McManus M. et al. Hes4: A potential prognostic biomarker for newly diagnosed patients with high-grade osteosarcoma. Pediatr. Blood Cancer. 2017; 64(5).

66. Ounzain S. et al. Proliferation-associated POU4F2/Brn-3b transcription factor expression is regulated by oestrogen through ERα and growth factors via MAPK pathway. Breast Cancer Res. 2011; 13(1): R5.

67. Cho I.-T. et al. Aristaless related homeobox (ARX) interacts with β-Catenin, BCL9, and P300 to regulate canonical wnt signaling. PLoS One. 2017; 12(1): e0170282.

68. Du H., Taylor H.S. The role of Hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb. Perspect. Med. 2016; 6(1): a023002.

69. Szczepanska M. et al. Expression of HOXA11 in the mid-luteal endometrium from women with endometriosis-associated infertility. Reprod. Biol. Endocrinol. 2012; 10(1): 1.

70. Douville J.M. et al. Mechanisms of MEOX1 and MEOX2 regulation of the cyclin dependent kinase inhibitors p21CIP1/WAF1 and p16INK4a in vascular endothelial cells. PLoS One. 2011; 6(12): e29099.

71. Ao X. et al. Sumoylation of TCF21 downregulates the transcriptional activity of estrogen receptor-alpha. Oncotarget. 2016; 7(18): 26220-34.

72. Warzecha C.C. et al. ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol. Cell. 2009; 33(5): 591-601.

73. Franasiak J.M. et al. Endometrial CXCL13 expression is cycle regulated in humans and aberrantly expressed in humans and Rhesus macaques with endometriosis. Reprod. Sci. 2015; 22(4): 442-51.

74. Li M.-Q. et al. Chemokine CCL2 enhances survival and invasiveness of endometrial stromal cells in an autocrine manner by activating Akt and MAPK/Erk1/2 signal pathway. Fertil. Steril. 2012; 97(4): 919-29. e1.

75. Taylor K.L. et al. Identification of interferon-β-stimulated genes that inhibit angiogenesis in vitro. J. Interf. Cytokine Res. 2008; 28(12): 733-40.

76. Wend P. et al. Wnt signaling in stem and cancer stem cells. Semin. Cell Dev. Biol. 2010; 21(8): 855-63.

77. Li J. et al. Endometriotic mesenchymal stem cells significantly promote fibrogenesis in ovarian endometrioma through the Wnt/β-catenin pathway by paracrine production of TGF-β1 and Wnt1. Hum. Reprod. 2016; 31(6): 1224-35.

Received 07.02.2017

Accepted 17.02.201

About the Authors

Bobrov Mikhail Yu., Ph.D., Head of the Laboratory of Molecular Pathophysiology, Research Center of Obstetrics, Gynecology and Perinatology,
Ministry of Health of Russia; Senior Researcher, Laboratory of Oxylipins, Academicians M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry.
117997, Russia, Moscow, Ac. Oparina str. 4
Balashov Ivan S., Ph.D., Laboratory of Bioinformatics, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4
Borovikov Pavel I., head of the Laboratory of Bioinformatics, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4
Naumov Vladimir, Ph.D., Laboratory of Bioinformatics, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4
Almova Indira K., postgraduate student of the Surgical Department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4
Khilkevich Elena Grigorevna, leading researcher of General Surgery, Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina Str. 4. Tel.: +74954387783. E-mail: e_khilkevich@oparina4.ru
Pavlovich Stanislav V., MD, PhD, Scientific secretary, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954381800. E-mail: s_pavlovich@oparina4.ru
Fillipova Elena Sergeevna, post-graduate of the gynecological department, Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4
Sukhikh Gennadiy Tikhonovich, Academician of RAS, MD, PhD, Professor, Director, Research Center of Obstetrics, Gynecology and Perinatology,
Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954381800. E-mail: g_sukhikh@oparina4.ru

For citations: Bobrov M.Yu., I. Balashov S., Filippova E.S., Almova I.K., Khilkevich E.G., Pavlovich S.V., Naumov V.A., Borovikov P.I., Sukhikh G.T. Use of transcriptomic databases for the analysis of pathogenetic factors of endometriosis. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2017; (4): 34-44. (in Russian)
http://dx.doi.org/10.18565/aig.2017.4.34-44

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.