Artificial intelligence in reproductive medicine: ethical and clinical aspects

Drapkina Yu.S., Kalinina E.A., Makarova N.P., Milchakov K.S., Frankevich V.E.

1) Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, Moscow, Russia; 2) I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russia
The introduction of artificial intelligence (AI) systems in medicine is one of the most important current trends in global healthcare. AI technologies can substantially update a diagnostic system and the design of new drugs and improve the quality of healthcare, by simultaneously reducing cost. Despite the obvious advantages of applying AI-based algorithms, there are a number of limitations in the implementation of these programs in healthcare. Among these problems, there is an ethical challenge in AI, as well as responsibility for programmed decision-making. Another important issue of the safe use of AI is the black box principle, when determining causal relationships between data, how the system has actually arrived at a derived conclusion cannot be determined exactly. At the moment, the major goal of AI studies should be to improve software accuracy.
Conclusion: The review considers the main areas of AI application, different machine learning techniques, ethical restrictions, and prospects for introducing these programs into clinical practice, including those used in assisted reproductive technologies.


artificial intelligence
assisted reproductive technologies
reproductive medicine
machine learning
decision support system


  1. Lamb D.J., Niederberger C.S. Artificial intelligence in medicine and male infertility. World J. Urol. 1993; 11(2): 129-36.
  2. Hamet P., Tremblay J. Artificial intelligence in medicine. Metabolism. 2017; 69: S36-40.
  3. Ившин А.А., Багаудин Т.З., Гусев А.В. Искусственный интеллект на страже репродуктивного здоровья. Акушерство и гинекология. 2021; 5: 17-24. [Ivshin A.A., Bagaudin T.Z., Gusev A.V. Artificial intelligence on guard of reproductive health. Obstetrics and Gynecology. 2021; 5: 17-24. (in Russian)].
  4. Gore J.C. Artificial intelligence in medical imaging. Magn. Reson. Imaging. 2020; 68: A1-4.
  5. Ranjini K., Suruliandi A., Raja S.P. Machine learning techniques for assisted reproductive technology: a review. J. Circuit. Syst. Comput. 2020; 29(11): 2030010.
  6. Wang R., Pan W., Jin L., Li Y., Geng Y., Gao C. et al. Artificial intelligence in reproductive medicine. Reproduction. 2019; 158(4): R139-54.
  7. Barnett-Itzhaki Z., Elbaz M., Butterman R., Amar D., Amitay M., Racowsky C. et al. Machine learning vs. classic statistics for the prediction of IVF outcomes. J. Assist. Reprod. Genet. 2020; 37(10): 2405-12.
  8. Sidey-Gibbons J.A.M., Sidey-Gibbons C.J. Machine learning in medicine: a practical introduction. BMC Med. Res. Methodol. 2019; 19(1): 64.
  9. Saeedi P., Yee D., Au J., Havelock J. Automatic identification of human blastocyst components via texture. IEEE Trans. Biomed. Eng. 2017; 64(12): 2968-78.
  10. VerMilyea M., Hall J.M.M., Diakiw S.M., Johnston A., Nguyen T., Perugini D. et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum. Reprod. 2020; 35(4): 770-84.
  11. Hajirasouliha I., Elemento O. Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. Fertil. Steril. 2020; 114(5): 908-13.
  12. Carrasco B., Arroyo G., Gil Y., Gómez M.J., Rodríguez I., Barri P.N. et al. Selecting embryos with the highest implantation potential using data mining and decision tree based on classical embryo morphology and morphokinetics. J. Assist. Reprod. Genet. 2017; 34(8): 983-90.
  13. Liao S., Pan W., Dai W., Jin L., Huang G., Wang R. et al. Development of a dynamic diagnosis grading system for infertility using machine learning. JAMA Netw. Open. 2020; 3(11): e2023654.
  14. Filho E.S., Noble J.A., Poli M., Griffiths T., Emerson G., Wells D. A method for semi-automatic grading of human blastocyst microscope images. Hum. Reprod. 2012; 27(9): 2641-8.
  15. Uyar A., Bener A., Ciray H.N. Predictive modeling of implantation outcome in an in vitro fertilization setting. Med. Decis. Making. 2015; 35(6): 714-25.
  16. Khan A., Gould S., Salzmann M. Automated monitoring of human embryonic cells up to the 5-cell stage in time-lapse microscopy images. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). IEEE; 2015: 389-93.
  17. Miyagi Y., Habara T., Hirata R., Hayashi N. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reprod. Med. Biol. 2019; 18(2): 190-203. 1
  18. Keskinbora K.H. Medical ethics considerations on artificial intelligence. J. Clin. Neurosci. 2019; 64: 277-82.
  19. Организация объединенных наций по вопросам образования науки и культуры (ЮНЕСКО). Рекомендация об этических аспектах искусственного интеллекта. Генеральная конференция, 41-я сессия, Париж, 2021. [United Nations Educational, Scientific and Cultural Organization (UNESCO). Recommendation on the Ethical Dimensions of Artificial Intelligence. General Conference, 41st Session, Paris, 2021. (in Russian)].
  20. Национальная стратегия развития искусственного интеллекта на период до 2030 года. Утверждена указом Президента Российской Федерации № 490 от 10 октября 2019 года «О развитии искусственного интеллекта в Российской Федерации». [The National Strategy for the Development of Artificial Intelligence for the period until 2030. Approved by Presidential Decree No. 490 of October 10, 2019 "On the Development of Artificial Intelligence in the Russian Federation". (in Russian)].
  21. I Международный форум «Этика искусственного интеллекта (ИИ): начало доверия». Кодекс этики ИИ. 26 октября 2021г. [First International Forum "Ethics of Artificial Intelligence (AI): The Beginning of Trust". AI Code of Ethics. October 26, 2021. (in Russian)].
  22. Российская Федерация. Федеральный закон № 123-ФЗ «О проведении эксперимента по установлению специального регулирования в целях создания необходимых условий для разработки и внедрения технологий искусственного интеллекта в субъекте Российской Федерации – городе федерального значения Москве и внесении изменений в статьи 6 и 10 Федерального закона "О персональных данных”». [Russian Federation. Federal Law № 123 "On conducting an experiment on the establishment of special regulation in order to create the necessary conditions for the development and implementation of artificial intelligence technologies in the subject of the Russian Federation – the city of federal significance Moscow and amending Articles 6 and 10 of the Federal Law" On Personal Data ". (in Russian)].
  23. Федеральное агентство по техническому регулированию и метрологии. Национальный стандарт Российской Федерации ГОСТ Р – 2020. Системы искусственного интеллекта. Системы искусственного интеллекта в клинической медицине. Часть 1. Клинические испытания. М.: Стандартинформ; 2020. [Federal Agency on Technical Regulation and Metrology. National Standard of the Russian Federation GOST R – 2020. Artificial Intelligence Systems. Artificial intelligence systems in clinical medicine. Part 1. Clinical tests. Moscow: Standardinform; 2020.(in Russian)].
  24. Хохлов А.Л., Белоусов Д.Ю. Этические аспекты применения программного обеспечения с технологией искусственного интеллекта. Качественная клиническая практика. 2021; 1: 70-84. [Khokhlov A.L., Belousov D.Yu. Ethical aspects of using software with artificial intelligence technology. Kachestvennaya klinicheskaya praktika=Good Clinical Practice. 2021; 1: 70-84. (in Russian)].
  25. Карпов О.Э., Пензин О.В., Веселова О.В. Организация и регуляция взаимодействия искусственного интеллекта с врачом и пациентом. Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. 2020; 15(2): 155-60. [Karpov O.E., Penzin O.V., Veselova O.V. Organization and regulation of artificial intelligence with a doctor and a patient interaction. Bulletin of Pirogov National Medical and Surgical Center. 2020; 15(2): 155-60.(in Russian)].
  26. DeGregory K.W., Kuiper P., DeSilvio T., Pleuss J.D., Miller R., Roginski J.W. et al. A review of machine learning in obesity. Obes. Rev. 2018; 19(5): 668-85.
  27. Гусев А.В., Морозов С.П., Кутичев В.А., Новицкий Р.Э. Нормативно-правовое регулирование программного обеспечения для здравоохранения, созданного с применением технологий искусственного интеллекта, в Российской Федерации. Медицинские технологии. Оценка и выбор. 2021; 43(1): 36-45. [Gusev A.V., Morozov S.P., Kutichev V.A., Novitsky R.E. Legal regulation of artificial intelligence software in healthcare in the Russian Federation. Medical Technologies. Assessment and Choice. 2021; 43(1):36-45. (in Russian)].
  28. Гаврилов Э.Л., Хоманов К.Э., Короткова А.В., Аслибекян Н.О., Шевченко Е.А. Актуальные направления развития справочно-информационных он-лайн приложений для врачей. Вестник Национального медико-хирургического Центра им. Н.И. Пирогова. 2017; 12(1): 83-7. [Gavrilov E.L., Khomanov K.E., Korotkova A.V., Aslibekyan N.O., Shevchenko E.A. Actual directions in progress of reference apps for doctors. Bulletin of Pirogov National Medical and Surgical Center. 2017;12(1): 83-7. (in Russian)].
  29. Schuh J.C.L., Funk K.A. Compilation of international standards and regulatory guidance documents for evaluation of biomaterials, medical devices, and 3-D printed and regenerative medicine products. Toxicol. Pathol. 2019; 47(3): 344-57.
  30. Keane P.A., Topol E.J. With an eye to AI and autonomous diagnosis. NP J. Digit. Med. 2018; 1: 40.
  31. Wolff J., Pauling J., Keck A., Baumbach J. The economic impact of artificial intelligence in health care: A Systematic review J. Med. Internet. Res. 2020; 22(2): e16866.
  32. Takshi S. Unexpected inequality: disparate-impact from artificial intelligence in healthcare decisions. J. Law Health. 2021; 34(2): 215-51.
  33. Aristidou A., Jena R., Topol E.J. Bridging the chasm between AI and clinical implementation. Lancet. 2022; 399(10325): 620.
  34. Handelman G.S., Kok H.K., Chandra R. V., Razavi A.H., Huang S., Brooks al. Peering into the black box of artificial intelligence: evaluation metrics of machine learning methods. Am. J. Roentgenol. 2019; 212(1): 38-43.
  35. Cimadomo D., Marconetto A., Innocenti F., Trio S., Chiappetta V., Soscia D. et al. O-101. Elucidation of blastocyst collapse and its consequences generated by artificial intelligence: A comprehensive analysis of 1943 embryos from 643 couples. Hum. Reprod. 2022; 37 (Suppl.1).

Received 20.07.2022

Accepted 31.10.2022

About the Authors

Yulia S. Drapkina, PhD, Researcher, Department of IVF named after Professor B.V. Leonov, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation,,,
117997, Russia, Moscow, Academician Oparin str., 4.
Elena A. Kalinina, Dr. Med. Sci., Professor, Head of the Department of IVF named after Professor B.V. Leonov, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation,,,
117997, Russia, Moscow, Academician Oparin str., 4.
Natalya P. Makarova, Dr. Bio. Sci., Leading Researcher, Department of IVF named after Professor B.V. Leonov, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation,,, 1
17997, Russia, Moscow, Academician Oparin str., 4.
Kirill S. Milchakov, PhD, Associate Professor, I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of the Russian Federation,, 119991, Russia, Moscow, Trubetskaya str., 8-2.
Vladimir E. Frankevich, Dr. Sci. (Physical and Mathematical), Head of the Department of Systems Biology in Reproduction, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation, +7(495)438-07-88 (ext. 2198),,
117997, Russia, Moscow, Academician Oparin str., 4.

Authors’ contributions: Drapkina Yu.S. – collection and analysis of literary data, writing the article; Kalinina E.A. – editing and approval of the publication; Makarova N.P. – editing the publication; Milchakov K.S. – editing the article, analysis of the submitted literary data; Frankevich V.E. – editing of the publication, analysis of submitted literary data.
Conflicts of interest: The authors declare that there are no possible conflicts of interest.
Funding: The investigation has been conducted without attracting additional funding from third parties.
For citation: Drapkina Yu.S., Kalinina E.A., Makarova N.P., Milchakov K.S., Frankevich V.E. Artificial intelligence in reproductive medicine: ethical and clinical aspects.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2022; 11: 37-44 (in Russian)

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.