ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

On the prospects for the use of spiramycin and secnidazole in obstetrics and gynecology

Gromovа O.A., Tetruashvili N. K., TorshinI.Yu.

1) Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow, Russia; 2) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia

The paper presents the results of the systematization of 1,755 publications on the pharmacology of spiramycin which is a macrolide antibiotic known for its minimal resistance as many strains remain susceptible to it. Spiramycin blocks protein synthesis by interacting with three binding sites on bacterial ribosomes. The efficacy of spiramycin is due to its triple pharmacodynamic effect, namely antibiotic, bactericidal and post-antibiotic, which persists after the end of treatment. Spiramycin has a good safety profile that is especially important for antibiotic therapy during pregnancy. This is due to its targeted accumulation in the tissues of the uterus and genitourinary system. It is the safety of spiramycin that determines the success of its use for the treatment of toxoplasmosis of pregnant women and for the prevention of transmission of the Toxoplasma gondii parasite from the pregnant woman to the fetus. The effectiveness and safety of spiramycin against oral pathogens causing caries, gingivitis and periodontitis has been demonstrated.
Spiramycin is an effective treatment for upper and lower respiratory tract infections, which can be particularly severe during pregnancy. This medication is highly effective in the treatment of urinary tract infections caused by chlamydia and ureaplasma. Spiramycin has promising potential for use in the treatment of chlamydia and non-gonococcal urethritis, especially in combination with secnidazole that has a good efficacy and safety profile compared to other 5-nitroimidazoles (metronidazole, tinidazole). Anti-inflammatory, anti-atherosclerotic, antineoplastic and other additional effects of spiramycin (e.g., anti-obesity effect) have been established. Spiramycin does not cause serious concomitant toxicity or does not contribute to increased magnesium loss, nor does it affect the metabolism of B vitamins. Therefore, unlike many other antibiotics, spiramycin is not a risk factor for life-threatening conditions such as prolongation of the QT interval on the ECG and paroxysmal ventricular tachycardia. Spiramycin does not stimulate the development of resistance in bacterial pathogens. These pharmacological effects make this medication even more important for the inhibition and eradication of bacterial strains that are resistant to other antibiotics.
Conclusion. Spiramycin (Doramitcin WM), as a macrolide with a favorable safety profile, for pregnancy as well, and low antibiotic resistance, and secnidazole (Secnidox), as 5 nitroimidazole with its convenient single-dose regimen and minimal effect on the normal vaginal microflora, can be considered as rational components of therapy, in particular in mixed urogenital infections (for example, mixed vaginitis).

Authors’ contributions: Gromova O.A., Tetruashvili N.K. – developing the concept and design of the article; Torshin I.Yu. – collecting and processing the materials, processing the statistical data; Gromova O.A., Torshin I.Yu. – writing the text; Tetruashvili N.K. – editing the article.
Conflicts of interest: The authors declare that there are no conflicts of interest.
Funding: The study was conducted without sponsorship.
For citation: Gromovа O.A., Tetruashvili N.K., Torshin I.Yu. 
Prospects for the use of spiramycin and secnidazole in obstetrics and gynecology.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2026; (1): 104-119 (in Russian)
https://dx.doi.org/10.18565/aig.2026.14

Keywords

antibiotic therapy for pregnant women
efficacy and safety
pharmacoinformatics
Doramitcin WM
Secnidox

References

  1. Lipsky B.A., Baker C.A. Fluoroquinolone toxicity profiles: a review focusing on newer agents. Clin. Infect. Dis. 1999; 28(2): 352-64. https://dx.doi.org/10.1086/515104
  2. Tran A., Zureik M., Sibiude J., Miranda S., Drouin J., Marty L. et al. First-trimester exposure to macrolides and risk of major congenital malformations compared with amoxicillin: A French nationwide cohort study. PLoS Med. 2025; 22(4): e1004576. https://dx.doi.org/10.1371/journal.pmed.1004576
  3. Ковалёва И.В. Клинические рекомендации по антибактериальной терапии внебольничных инфекций: на что обратить внимание практическому врачу? Лечащий Врач. 2025; 5(29): 59-64. [Kovaleva I.V. Clinical recommendations for antibacterial therapy of community-acquired infections: what should a practitioner pay attention to? Lechaschi Vrach. 2025; 5(29): 59-64. (in Russian)]. https://dx.doi.org/10.51793/OS.2025.28.5.010
  4. Письмо Федеральной службы по надзору в сфере здравоохранения (Росздравнадзор) от 15 октября 2024 г. N 01И-1153/24 Об обеспечении населения лекарственными препаратами. [Letter from the Federal Service for Surveillance in Healthcare dated October 15, 2024 No. 01И-1153/24. (in Russian)]. https://roszdravnadzor.gov.ru/i/upload/images/2024/10/15/1729002451.31159-1-3350756.pdf
  5. Parker C.T., Garrity G.M. (18 August 2022). Parker C.T., Mannor K., Garrity G.M. (eds.). Streptomyces ambofaciens Pinnert-Sindico 1954 (Approved Lists 1980) emend. Nouioui et al. 2018. Name Abstract (Report). NamesforLife, LLC. https://dx.doi.org/10.1601/nm.6849
  6. В9. Rovamycine (Rhone-Poulenc Rorer). En: Vidal 1994. 70th ed. París: Editions du Vidal, 1994: 1361.
  7. Козлов Р.С., Иванчик Н.В., Микотина А.В., Дехнич А.В. In vitro активность макролидных антибиотиков в отношении Streptococcus pneumoniae и Streptococcus pyogenes в Российской Федерации: «Status praesens». Клиническая микробиология и антимикробная химиотерапия. 2024; 26(3): 318-26. [Kozlov R.S., Ivanchik N.V., Mikotina A.V., Dekhnich A.V. In vitro activity of macrolide antibiotics against Streptococcus pneumoniae and Streptococcus pyogenes in the Russian Federation: «Status praesens». Clinical Microbiology and Antimicrobial Chemotherapy. 2024; 26(3): 318-26 (in Russian)]. https://dx.doi.org/10.36488/cmac.2024.3.318-326
  8. Торшин И.Ю. О задачах оптимизации, возникающих при применении топологического анализа данных к поиску алгоритмов прогнозирования с фиксированными корректорами. Информатика и ее применения. 2023; 17(2): 2-10. [Torshin I.Yu. On optimization problems arising fromthe application of topological data analysis to the search for forecasting algorithms with fixed correctors. Informatics and Applications. 2023; 17(2): 2-10 (in Russian)]. https://dx.doi.org/10.14357/19922264230201
  9. Торшин И.Ю. О формировании множеств прецедентов на основе таблиц разнородных признаковых описаний методами топологической теории анализа данных. Информатика и ее применения. 2023; 17(3): 2-7. [Torshin I.Yu. On the formation of sets of precedents basedon tables of heterogeneous feature descriptions by methods of topological theory of data analysis. Informatics and Applications. 2023; 17(3): 2-7 (in Russian)]. https://dx.doi.org/10.14357/19922264230301
  10. Громова О.А., Торшин И.Ю., Кобалава Ж.Д., Сорокина М.А., Виллевальде С.В., Галочкин С.А., Гоголева И.В., Грачева О.Н., Гришина Т.Р., Громов А.Н., Егорова Е.Ю., Калачева А.Г., Малявская С.И., Мерай И.А., Семенов В.А. Дефицит магния и гиперкоагуляционные состояния: метрический анализ данных выборки пациентов 18–50 лет лечебно-профилактических учреж­дений России. Кардиология. 2018; 58(4): 22-35. [Gromova O.A., Torshin I.Yu., Kobalava Zh.D., Sorokina M.A., Villevalde S.V., Galochkin S.A., Gogoleva I.V., Gracheva O.N., Grishina T.R., Gromov A.N., Egorova E.Yu., Kalacheva A.G., Malyavskaya S.I., Meraï I.A., Semenov V.A. Deficit of magnesium and states of hypercoagulation: intellectual analysis of data obtained from a sample of patients aged 18-50 years from medical and preventive facilities in Russia. Kardiologiia. 2018; 58(4): 22-35 (in Russian)]. https://dx.doi.org/10.18087/cardio.2018.4.10106
  11. Торшин И.Ю., Громова О.А., Стаховская Л.В., Ванчакова Н.П., Галустян А.Н., Кобалава Ж.Д., Гришина Т.Р., Громов А.Н., Иловайская И.А., Коденцова В.М., Калачева А.Г., Лиманова О.А., Максимов В.А., Малявская С.И., Мозговая Е.В., Тапильская Н.И., Рудаков К.В., Семенов В.А. Анализ 19,9 млн публикаций базы данных PubMed/MEDLINE методами искусственного интеллекта: подходы к обобщению накопленных данных и феномен “fake news”. ФАРМАКОЭКОНОМИКА. Современная фармако­экономика и фармакоэпидемиология. 2020; 13(2): 146-63. [Torshin I.Yu., Gromova O.A., Stakhovskaya L.V., Vanchakova N.P., Galustyan A.N., Kobalava Zh.D., Grishina T.R., Gromov A.N., Ilovaiskaya I.A., Kodentsova V.M.,Kalacheva A.G., Limanova O.A., Maksimov V.A., Malyavskaya S.I., Mozgovaya E.V., Tapilskaya N.I., Rudakov K.V., Semenov V.A. Analysis of 19.9 million publications of the PubMed/MEDLINE database using artificial intelligence methods: approaches to the generalizations of accumulated ata and the phenomenon of “fake news”. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2020; 13(2): 146-63 (in Russian)]. https://dx.doi.org/10.17749/2070-4909/farmakoekonomika.2020.021
  12. Franco P.S., Gomes A.O., Barbosa B.F., Angeloni M.B., Silva N.M., Teixeira-Carvalho A. et al. Azithromycin and spiramycin induce anti-inflammatory response in human trophoblastic (BeWo) cells infected by Toxoplasma gondii but are able to control infection. Placenta. 2011; 32(11): 838-44. https://dx.doi.org/10.1016/j.placenta.2011.08.012
  13. Grujić J., Djurković-Djaković O., Nikolić A., Klun I., Bobić B. Effectiveness of spiramycin in murine models of acute and chronic toxoplasmosis. Int. J. Antimicrob. Agents. 2005; 25(3): 226-30. https://dx.doi.org/10.1016/j.ijantimicag.2004.09.015
  14. Chew W.K., Segarra I., Ambu S., Mak J.W. Significant reduction of brain cysts caused by Toxoplasma gondii after treatment with spiramycin coadministered with metronidazole in a mouse model of chronic toxoplasmosis. Antimicrob. Agents Chemother. 2012; 56(4): 1762-8. https://dx.doi.org/10.1128/AAC.05183-11
  15. El Saftawy E.A., Turkistani S.A., Alghabban H.M., Albadawi E.A., Ibrahim B.E., Morsy S. et al. Effects of Lactobacilli acidophilus and/or spiramycin as an adjunct in toxoplasmosis infection challenged with diabetes. Food Waterborne Parasitol. 2023; 32: e00201. https://dx.doi.org/10.1016/j.fawpar.2023.e00201
  16. Garweg J.G., Kieffer F., Mandelbrot L., Peyron F., Wallon M. Long-term outcomes in children with congenital toxoplasmosis-a systematic review. Pathogens. 2022; 11(10): 1187. https://dx.doi.org/10.3390/pathogens11101187
  17. Cetinkaya Demir B., Yuruk O., Heper Y., Ozkan H. Toxoplasmosis in pregnancy; analysis of maternal seropositivity in a large cohort in Turkey and clinical consequences of neonates. Medicine (Baltimore). 2025; 104(40): e44881. https://dx.doi.org/10.1097/MD.0000000000044881
  18. De Santis M., Tartaglia S., Apicella M., Visconti D., Noia G., Valentini P. et al. The prevention of congenital toxoplasmosis using a combination of Spiramycin and Cotrimoxazole: The long-time experience of a tertiary referral centre. Trop. Med. Int. Health. 2024; 29(8): 697-705. https://dx.doi.org/10.1111/tmi.14021
  19. Shiojiri D., Kinai E., Teruya K., Kikuchi Y., Oka S. Combination of clindamycin and azithromycin as alternative treatment for Toxoplasma gondii encephalitis. Emerg. Infect. Dis. 2019; 25(4): 841-3. https://dx.doi.org/10.3201/eid2504.181689
  20. Ribeiro S.K., Mariano I.M., Cunha A.C.R., Pajuaba A.C.A.M., Mineo T.W.P., Mineo J.R. Treatment protocols for gestational and congenital toxoplasmosis: a systematic review and meta-analysis. Microorganisms. 2025; 13(4): 723. https://dx.doi.org/10.3390/microorganisms13040723
  21. Montoya J.G., Laessig K., Fazeli M.S., Siliman G., Yoon S.S., Drake-Shanahan E. et al. A fresh look at the role of spiramycin in preventing a neglected disease: meta-analyses of observational studies. Eur. J. Med. Res. 2021; 26(1): 143. https://dx.doi.org/10.1186/s40001-021-00606-7
  22. Damar Çakırca T., Can İ.N., Deniz M., Torun A., Akçabay Ç., Güzelçiçek A. Toxoplasmosis: A timeless challenge for pregnancy. Trop. Med. Infect. Dis. 2023; 8(1): 63. https://dx.doi.org/10.3390/tropicalmed8010063
  23. Thiébaut R., Leproust S., Chêne G., Gilbert R. Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients’ data. Lancet. 2007; 369(9556): 115-22. https://dx.doi.org/10.1016/S0140-6736(07)60072-5
  24. Obeagu E.I., Okoroiwu G.I., Ubosi N.I., Obeagu G.U., Ayogu E.E., Elamin E. The role of neutrophils in the pathogenesis of Trichomonas vaginalis infection in pregnant women: A review. Medicine (Baltimore). 2025; 104(41): e45063. https://dx.doi.org/10.1097/MD.0000000000045063
  25. Di Pietro M., Filardo S., Sessa R. Cervicovaginal microbiota in Chlamydia trachomatis and other preventable sexually transmitted infections of public health importance: a systematic umbrella review. New Microbiol. 2025;48(1): 5-13.
  26. Binet R., Maurelli A.T. Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2. Antimicrob. Agents Chemother. 2007; 51(12): 4267-75. https://dx.doi.org/10.1128/AAC.00962-07
  27. Lau C.Y., Qureshi A.K. Azithromycin versus doxycycline for genital chlamydial infections: a meta-analysis of randomized clinical trials. Sex. Transm. Dis. 2002; 29(9): 497-502. https://dx.doi.org/10.097/00007435-200209000-00001
  28. Maeda S., Tamaki M., Kubota Y., Nguyen P.B., Yasuda M., Deguchi T. Treatment of men with urethritis negative for Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma parvum and Ureaplasma urealyticum. Int. J. Urol. 2007; 14(5): 422-5. https://dx.doi.org/10.1111/j.1442-2042.2007.01750.x
  29. Кукес И.В., Детушева Е.В. Оценка фармакодинамических параметров секнидазола в контексте преодоления защитных биопленок бактериальных агентов на примере модели in vitro. Лекарственные средства и рациональная фармакотерапия. 2024; 2(11): 37-44. [Kukes I.V., Detusheva E.V. Evaluation of the pharmacodynamic parameters of secnidazole in the context of overcoming protective biofilms of bacterial agents using an in vitro model as an example. Medicines and Rational Pharmacotherapy. 2024; 2(11): 37-44 (in Russian)]. https://dx.doi.org/10.56356/27827259_2024_11_37
  30. Торшин И.Ю., Аполихина И.А., Баранов И.И., Тапильская Н.И., Савичева А.М., Громова О.А. Эффективность и безопасность комбинации тинидазола и тиоконазола в лечении вагинальных инфекций. Акушерство и гинекология. 2020; 4: 214-22. [Torshin I.Yu., Apolikhina I.A., Baranov I.I., Tapilskaya N.I., Savicheva A.M., Gromova O.A. Efficacy and safety of a combination of tinidazole and tioconazole in the treatment of vaginal infections. Obstetrics and Gynecology. 2020; (4): 214-22 (in Russian)]. https://dx.doi.org/10.18565/aig.2020.4.214-222
  31. Громова О.А., Торшин И.Ю., Гарасько Е.А. Молекулярные механизмы разрушения бактериальных пленокпри топическом применении аскорбиновой кислоты. Гинекология. 2010; 12(6): 12-7. [Gromova O.A., Torshin I.Y., Garas’ko E.A. Molekulyarnye mekhanizmy razrusheniya bakterial’nykh plenok pri topicheskom primenenii askorbinovoy kisloty. Gynecology. 2010; 12(6): 12-7 (in Russian)].
  32. Кузьмин В.Н. Новые возможности в лечении смешанных бактериальных инфекций у женщин. Лечащий Врач. 2022; 11(25): 76-81. [Kuzmin V.N. New opportunities in the treatment of mixed bacterial infections in women. Lechaschi Vrach. 2022; 11(25): 76-81 (in Russian)]. https://dx.doi.org/10.51793/OS.2022.25.11.013
  33. Ших Е.В. Особенности фармакотерапии секнидазолом и перспективы применения для профилактики и лечения внутрибольничных инфекций. Фармакология & Фармакотерапия. 2022; (2): 18-24. [Shikh E.V. Features of pharmacotherapy with secnidazole and prospects for its use in the prevention and treatment of nosocomial infections. Pharmacology & Pharmacotherapy. 2022; (2): 18-24 (in Russian)]. https://dx.doi.org/10.46393/27132129_2022_2_18
  34. Гуржий Ю.Б. Новый терапевтический подход в лечении бактериального вагиноза. Эффективная фармакотерапия. 2020; 16(7): 10-2. [Gurzhiy Yu.B. A new therapeutic approach to the treatment of bacterial vaginosis. Effective Pharmacotherapy. 2020; 16(7): 10-2 (in Russian)]. https://dx.doi.org/10.33978/2307-3586-2020-16-7-10-12
  35. Куценко И.Г., Боровиков И.О., Кравцова Е.И., Батмен С.К., Магай А.С., Боровикова О.И., Авакимян В.А., Андреева А.А. Бактериальный вагиноз: сравнительная оценка терапевтической эффективности 5-нитроимидазолов. РМЖ. Мать и дитя. 2023; 6(2): 78-87. [Kutsenko I.G., Borovikov I.O., Kravtsova E.I., Batmen S.K., Magai A.S., Borovikova O.I., Avakimyan V.A., Andreeva A.A. Bacterial vaginosis: comparative assessment of the therapeutic efficacy of 5-nitroimidazoles. RMJ. Mother and Child. 2023; 6(2): 78-87 (in Russian)]. http://dx.doi.org/10.32364/2618-8430-2023-6-2-78-87
  36. Серова О.Ф., Шмелева Г.М., Шутикова Н.В. Эффективность секнидазола в терапии бактериального вагиноза. Гинекология. 2023; 25(2): 202-6. [Serova O.F., Shmeleva G.M., Shutikova N.V. Efficacy of secnidazole in the treatment of bacterial vaginosis. Gynecology. 2023; 25(2): 202-6 (in Russian)]. http://dx.doi.org/10.26442/20795696.2023.2.202257
  37. Беженарь В.Ф., Молчанов О.Л., Лазарева Н.Б., Галиуллина Л.А., Позняк А.Л. Эффективность препарата секнидазол в лечении трихомоноза и дисбиоза влагалища. Медицинский совет. 2022; 16(5): 20-7. [Bezhenar V.F., Molchanov O.L., Lazareva N.B., Galiullina L.A., Poznyak A.L. Efficiency of secnidazole in the treatment of trichomoniasis and vaginal dysbiosis. Medical Council. 2022; 16(5): 20-7 (in Russian)]. https://dx.doi.org/10.21518/2079-701X-2022-16-5
  38. Нгема М.В., Притуло О.А., Винцерская Г.А., Прохоров Д.В., Кузнецова М.Ю., Шеренговская Ю.В. Cовременные аспекты лечения урогенитального трихомониаза у женщин. Журнал Поликлиника. 2020; 6: 59-62. [Nguema M.V., Pritullo O.A., Vintserskaya G.A., Prokhorov D.V., Kuznetsova M.Yu., Sherenovskaya Yu.V. Modern aspects of the treatment of urogenital trichomoniasis in women. Poliklinika Journal. 2020; 6: 59-62 (in Russian)].
  39. Доброхотова Ю.Э., Шадрова П.А. Терапевтические возможности секнидазола в лечении бактериального вагиноза. РМЖ. Мать и дитя. 2022; 5(4): 297-302. [Dobrokhotova Yu.E., Shadrova P.A. Therapeutic possibilities of secnidazole in the treatment of bacterial vaginosis. RMJ. Mother and Child. 2022; 5(4): 297-302 (in Russian)]. https://dx.doi.org/10.32364/2618-8430-2022-5-4-297-302
  40. Лазарева Н.Б., Реброва Е.В., Рязанова А.Ю., Ших Е.В. Клинико-фармакологическое обоснование принципов терапии бактериальных вагинозов. Вопросы гинекологии, акушерства и перинатологии. 2021; 20(3): 134-45. [Lazareva N.B., Rebrova E.V., Ryazanova A.Yu., Shikh E.V. Clinical and pharmacological rationale for principles of therapy for bacterial vaginosis. Gynecology, Obstetrics and Perinatology. 2021; 20(3): 134–45. (in Russian)]. https://dx.doi.org/10.20953/1726-1678-2021-3-134-145
  41. Тихомиров А.Л. Оптимизация антимикробной терапии в амбулаторной гинекологической практике. Эффективная фармакотерапия. 2021; 17(9): 36-40. [Tikhomirov A.L. Optimization of antimicrobial therapy in outpatient gynecological practice. Effective Pharmocotherapy. 2021; 17(9): 36-40 (in Russian)]. https://dx.doi.org/10.33978/2307-3586-2021-17-9-36-40
  42. Детушева Е.В., Фурсова Н.К., Кукес И.В. Исследование условий формирования резистентности у микроорганизмов, встречающихся в гинекологической практике, к лекарственным средствам секнидазол и метронидазол (in vitro). Лекарственные средства и рациональная фармакотерапия. 2024; 1(10): 33-8. [Detusheva E.V., Fursova N.K., Kukes I.V. Study of the conditions for the formation of resistance in microorganisms encountered in gynecological practice to drugs secnidazole and metronidazole (in vitro). Drugs and Rational Pharmacotherapy. 2024; 1(10): 33-8 (in Russian)]. https://dx.doi.org/10.56356/27827259_2024_10_33
  43. Ng E., Tay J.R.H., Boey S.K., Laine M.L., Ivanovski S., Seneviratne C.J. Antibiotic resistance in the microbiota of periodontitis patients: an update of current findings. Crit. Rev. Microbiol. 2024; 50(3): 329-40. https://dx.doi.org/10.1080/1040841X.2023.2197481
  44. Chiappe V., Gómez M., Fernández-Canigia L., Romanelli H. The effect of spiramycin on Porphyromonas gingivalis and other «classic» periopathogens. Acta Odontol. Latinoam. 2011; 24(1): 115-21.
  45. Khattri S., Kumbargere Nagraj S., Arora A., Eachempati P., Kusum C.K., Bhat K.G. et al. Adjunctive systemic antimicrobials for the non-surgical treatment of periodontitis. Cochrane Database Syst Rev. 2020; 11(11): CD012568. https://dx.doi.org/10.1002/14651858.CD012568.pub2
  46. Lakhssassi N., Sixou M. [Efficacy variation of erythromycin and spiramycin on periopathogens in aggressive periodontitis. An in vitro comparative study]. Pathol. Biol. (Paris). 2005; 53(8-9): 527-35. https://dx.doi.org/10.1016/j.patbio.2005.06.008
  47. Clewe O., Goutelle S., Conte J.E. Jr, Simonsson U.S. A pharmacometric pulmonary model predicting the extent and rate of distribution from plasma to epithelial lining fluid and alveolar cells--using rifampicin as an example. Eur. J. Clin. Pharmacol. 2015; 71(3): 313-9. https://dx.doi.org/10.1007/s00228-014-1798-3
  48. Sobeleva L.G., Komlev A.D., Korovina O.V. Opyt primeneniia rovamitsina i roksitromitsina u bol'nykh khronicheskim bronkhitom na fone posttuberkuleznykh izmeneniĭ [Experience with rovamycin and roxithromycin in patients with chronic bronchitis in the presence of posttuberculous changes]. Probl. Tuberk. 2002; (2): 27-9. Russian.
  49. Rondini G., Cocuzza C.E., Cianflone M., Lanzafame A., Santini L., Mattina R. Bacteriological and clinical efficacy of various antibiotics used in the treatment of streptococcal pharyngitis in Italy. An epidemiological study. Int. J. Antimicrob. Agents. 2001; 18(1): 9-17. https://dx.doi.org/10.1016/s0924-8579(01)00342-9
  50. Jeannin L., Vergeret J., Caillaud D., Poirier R., Vandevenne A., Vercken J.B. [Community-acquired pneumonia in healthy adults: 188 patients treated with spiramycin in private practice]. Rev. Pneumol. Clin. 1992;48(6): 263-8.
  51. Mgbor N.C., Umeh R.E. A blind parallel comparative study of the efficacy and safety of rovamycin versus augmentin in the treatment of acute otitis media. West Afr. J. Med. 2002; 21(2): 117-20.
  52. Choi S.H., Cesar A., Snow T.A.C., Saleem N., Arulkumaran N., Singer M. Efficacy of doxycycline for mild-to-moderate community-acquired pneumonia in adults: A systematic review and meta-analysis of randomized controlled trials. Clin. Infect. Dis. 2023; 76(4): 683-91. https://dx.doi.org/10.1093/cid/ciac615
  53. Громова О.А., Торшин И.Ю. Хемоинформационное исследование спирамицина в сравнении с другими антибиотиками. ФАРМАКОЭКОНОМИКА. Современная фармакоэкономика и фармакоэпидемиология. 2025; 18(1): 80-94. [Gromovа O.A., Torshin I.Yu. Chemoinformatic study of spiramycin in comparison with other antibiotics. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2025; 18(1): 80-94. (in Russian)]. https://dx.doi.org/10.17749/2070-4909/farmakoekonomika.2025.296
  54. Sáez-Llorens X., Odio C.M., Umaña M.A., Morales M.V. Spiramycin vs. placebo for treatment of acute diarrhea caused by Cryptosporidium. Pediatr. Infect. Dis. J. 1989; 8(3): 136-40.
  55. Mayaud C., Dournon E., Montagne V., Denis M., Rossert J., Akoun G. Efficacy of intravenous spiramycin in the treatment of severe Legionnaires’ disease. J. Antimicrob. Chemother. 1988; 22 Suppl B: 179-82. https://dx.doi.org/10.1093/jac/22.supplement_b.179
  56. Riou J.Y., Guibourdenche M. Spiramycin: in-vitro activity on Branhamella catarrhalis. J. Antimicrob. Chemother. 1988; 22 Suppl B: 53-6. https://dx.doi.org/10.1093/jac/22.supplement_b.53
  57. Anuradha S., Kumar K.S., Bhama S., Kishan V. Fermentation, isolation, purification and characterization of an antitubercular antibiotic from Streptomyces luridus MTCC 4402. Indian J. Exp. Biol. 2016; 54(9): 577-85.
  58. Zeng S., Meng X., Huang Q., Lei N., Zeng L., Jiang X. et al. Spiramycin and azithromycin, safe for administration to children, exert antiviral activity against enterovirus A71 in vitro and in vivo. Int. J. Antimicrob. Agents. 2019; 53(4): 362-9. https://dx.doi.org/10.1016/j.ijantimicag.2018.12.009
  59. Ismail H.I., Sheir H.T. Immunotherapeutic effect of spiramycin in experimental giardiasis. J. Egypt Soc. Parasitol. 2016; 46(1): 19-25. https://dx.doi.org/10.12816/0026146
  60. FarahatAllam A., Shehab A.Y., Fawzy Hussein Mogahed N.M., Farag H.F., Elsayed Y., Abd El-Latif N.F. Effect of nitazoxanide and spiramycin metronidazole combination in acute experimental toxoplasmosis. Heliyon. 2020 Apr 16;6(4):e03661. doi: 10.1016/j.heliyon.2020.e03661
  61. Fan H., Gilbert R., O’Callaghan F., Li L. Associations between macrolide antibiotics prescribing during pregnancy and adverse child outcomes in the UK: population based cohort study. BMJ. 2020; 368: m331. https://dx.doi.org/10.1136/bmj.m331
  62. Telithromycin: review of adverse effects. Prescrire Int. 2014; 23(154): 264-6.
  63. Brook I. Pharmacodynamics and pharmacokinetics of spiramycin and their clinical significance. Clin. Pharmacokinet. 1998; 34(4): 303-10. https://dx.doi.org/10.2165/00003088-199834040-00003
  64. Smith C.R. The spiramycin paradox. J. Antimicrob. Chemother. 1988; 22 Suppl B: 141-4. https://dx.doi.org/10.1093/jac/22.supplement_b.141
  65. Avci M.E., Arslan F., Çiftçi Ş., Ekiz A., Tüten A., Yildirim G. et al. Role of spiramycin in prevention of fetal toxoplasmosis. J. Matern. Fetal Neonatal. Med. 2016; 29(13): 2073-6. https:/dx./doi.org/10.3109/14767058.2015.1074998
  66. Andrews K.T., Fisher G., Skinner-Adams T.S. Drug repurposing and human parasitic protozoan diseases. Int. J. Parasitol. Drugs Drug Resist. 2014; 4(2): 95-111. https://dx.doi.org/10.1016/j.ijpddr.2014.02.002
  67. Торшин И.Ю., Калачева А.Г., Громова О.А., Рогозин М.А. Оценка препаратов рубрикатора АТХ методом хемореактомного скрининга для профилактики дефицитов магния и пиридоксина. Фармакокинетика и фармакодинамика. 2025; (3): 21-9. [Torshin I.Yu., Kalacheva A.G., Gromova O.A., Rogozin M.A. Evaluation of ATX rubricator drugs by chemoreactome screening method for prevention of magnesium and pyridoxine deficiencies. Pharmacokinetics and pharmacodynamics. 2025; (3): 21-9. (in Russian)]. https://dx.doi.org/10.37489/2587-7836-2025-3-21-29
  68. Громова О.А., Торшин И.Ю.; под ред. Е.И. Гусева. Микронутриенты в неврологии. Руководство. М.: ГЭОТАР-Медиа; 2026. 984 c. [Gromova O.A., Torshin I.Yu.; Gusev E.I., eds. Micronutrients in Neurology. A guide. Moscow: GEOTAR-Media; 2026, 984 p. (in Russian)].
  69. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Желудочковые аритмии у взрослых. 2016. Доступно по: https://www.consultant.ru/document/cons_doc_LAW_326289/8efd5f17af55cb35a770f73937590c642437b7eb/ ID: КР386 [Ministry of Health of the Russian Federation. Clinical guidelines. Ventricular arrhythmias in adults. 2016. Available at: https://www.consultant.ru/document/cons_doc_LAW_326289/8efd5f17af55cb35a770f73937590c642437b7eb/ID: КР386 (in Russian)].
  70. Neuweiler W., Ritter P. Rovamycin therapy of puerperal mastitis. Geburtshilfe Frauenheilkd. 1957; 17(5): 405-13.
  71. Matsuda M., Goto A., Saito H., Kobayashi H., Kakegawa T. [Suppressive effect of spiramycin on cell division]. Jpn. J. Antibiot. 2003; 56 Suppl A: 121-3.
  72. Wang Z., Cheng J., Wen H., Hou T., Luo F., Wang Y. et al. Synthesis, anticancer and antibacterial evaluation of novel spiramycin-acylated derivatives. RSC Adv. 2024; 14(52): 38898-907. https://dx.doi.org/10.1039/d4ra03126a
  73. Aleksiadi E.R., Shaburishvili T.Sh. [Oral spiramycin for prevention of restenosis in coronary arteries].Georgian Med. News. 2007; (150): 11-3.
  74. Громова О.А., Торшин И.Ю., Лила А.М., Назаренко А.Г., Золотовская И.А. Профилактика рестеноза у пациентов после чрескожного коронарного вмешательства: возможный патогенетический подход. РМЖ. 2019; 8(1): 33-40. [Gromova O.A., Torshin I.Yu., Lila A.M., Nazarenko A.G., Zolotovskaya I.A. Prevention of restenosis in patients after percutaneous coronary intervention: a possible pathogenetic approach. RMJ. 2019; 8(1): 33-40 (in Russian)].
  75. Kim M.O., Ryu H.W., Choi J.H., Son T.H., Oh S.R., Lee H.S. et al. Anti-obesity effects of spiramycin in vitro and in vivo. PLoS One. 2016; 11(7): e0158632. https://dx.doi.org/10.1371/journal.pone.0158632
  76. Громова О.А., Торшин И.Ю. Магний и «болезни цивилизации». М.: ГЭОТАР-Медиа; 2018. 800 с. [Gromova O.A., Torshin I.Yu. Magnesium and the “Diseases of Civilization”. Moscow: GEOTAR-Media; 2018. 800 p. (in Russian)].
  77. Указ Президента РФ «О Стратегии развития здравоохранения в Российской Федерации» на период до 2030 года 8 декабря 2025 года №896. Доступно по: https://www.garant.ru/products/ipo/prime/doc/413121153/ [Decree of the President of the Russian Federation «On the Strategy for the Development of Healthcare in the Russian Federation» for the period up to 2030 December 8, 2025 No. 896. Available at: https://www.garant.ru/products/ipo/prime/doc/413121153/ (in Russian)].

Received 19.01.2025

Accepted 29.01.2025

About the Authors

Olga A. Gromova, Dr. Med. Sci., Professor, Leading Researcher, Federal Research Center “Computer Science and Control” of RAS, 44 bldg. 2 Vavilov str., Moscow, 119333, Russia, unesco.gromova@gmail.com, Scopus Author ID: 7003589812, WoS ResearcherID: J-4946-2017, RSCI SPIN-code: 6317-9833, https://orcid.org/0000-0002-7663-710X
Nana K. Tetruashvili, Dr. Med. Sci., Head of the Department of Pregnancy Loss Prevention and Therapy, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 4 Ac. Oparina str., Moscow, 117997, Russia, tetrauly@mail.ru, https://orcid.org/0000-0002-9201-2281
Ivan Yu. Torshin, PhD (Phys. Math.), PhD (Chem.), Senior Researcher, Federal Research Center “Computer Science and Control” of RAS, 44 bldg. 2, Vavilov str., Moscow, 119333, Russia, tiy135@yahoo.com, Scopus Author ID: 7003300274, WoS ResearcherID: C-7683-2018, RSCI SPIN-code: 1375-1114, https://orcid.org/0000-0002-2659-7998
Corresponding author: Olga A. Gromova, unesco.gromova@gmail.com

Similar Articles