Role of hypoxia-inducible factor-1 alpha and transforming growth factor-beta 1 in the development of oxidative stress and immune dysbalance in endometriosis

Vanko L.V., Korotkova T.D., Krechetova L.V.

Academician V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of the Russian Federation, Moscow, Russia
The paper analyzes the data available in the literature on the main pathogenetic mechanisms of endometriosis development and the role of oxidative stress in this process. There was substantial progress in the study of the laws of endometriosis development, in particular those underlying the regulators of pathophysiological processes and the mediators of inflammation and immune response, as well as their signaling pathways. Oxidative stress that causes an inflammatory response in the abdominal cavity and plays a central role in the development and progression of endometriosis, regulating the expression of numerous genes encoding immunoregulators, growth factors, cytokines, and cell adhesion molecules. Particular attention is paid to the characteristics of key factors contributing to the pathogenesis of endometriosis: hypoxia-induced factor-1α, central mediator of hypoxic response, and multifunctional transforming growth factor-β1.
Conclusion. The presented data expand knowledge about the pathogenesis of endometriosis and indicate the need for further investigations of the factors and signaling pathways that may serve as targets for targeted therapy aimed at suppressing inflammation, oxidative stress and immune dysbalance.

Keywords

endometriosis
pathogenesis
oxidative stress
hypoxia
hypoxia-induced factor-1α
transforming growth factor-β1

References

  1. Адамян Л.В., ред. Эндометриоз: диагностика, лечение и реабилитация. Клинические рекомендации по ведению больных. М.; 2013. 66с. [Adamyan L.V., ed. Endometriosis: diagnosis, treatment and rehabilitation. Clinical guidelines for the management of patients. M.; 2013. 66c. (in Russian)]
  2. Чернуха Г.Е., Ильина Л.М., Адамян Л.В., Павлович С.В. Глубокий инфильтративный эндометриоз: послеоперационные рецидивы и возможные пути их профилактики. Акушерство и гинекология. 2015; 8: 39-46.[ Chernukha G. E., Il’ina L. M., Adamyan L. V., Pavlovich S. V. Deep infiltrative endometriosis: postoperative recurrences and possible ways of their prevention. Obstetrics and gynecology. 2015; 8: 39-46 (in Russian)
  3. Giudice L.C. Clinical practice. Endometriosis. N. Engl. J. Med. 2010; 362(25): 2389-98. https://dx.doi.org/10.1056/NEJMcp1000274.
  4. Burney R.O., Giudice L.C. Pathogenesis and pathophysiology of endometriosis. Fertil. Steril. 2012; 98(3): 511-9. https://dx.doi.org/10.1016/j.fertnstert.2012.06.029.
  5. Koninckx P.R., Ussia A., Adamyan L., Keckstein J., Wattiez A. Epidemiology of subtle, typical, cystic, аnd deep endometriosis: a systematic review. Gynecol. Surg. 2016; 13(4): 457-67.
  6. Sourial S., Tempest N., Hapangama D.K. Theories on the pathogenesis of endometriosis. Int. J. Reprod. Med. 2014; 2014: 179515. https://dx.doi.org/10.1155/2014/179515.
  7. Klemmt P.A.B., Starzinski-Powitz A. Molecular and cellular pathogenesis of endometriosis. Curr. Womens Health. Rev. 2018; 14(2): 106-16. https://dx.doi.org/10.2174/1573404813666170306163448.
  8. Ito F., Yamada Y., Shigemitsu A., Akinishi M., Kaniwa H., Miyake R. et al. Role of oxidative stress in epigenetic modification in endometriosis. Reprod. Sci. 2017; 24(11): 1493-502. https://dx.doi.org/10.1177/1933719117704909.
  9. Yu Y.X., Xiu Y.L., Chen X., Li Y.L. Transforming growth factor-beta 1 involved in the pathogenesis of endometriosis through regulating expression of vascular endothelial growth factor under hypoxia. Chin. Med. J. (Engl). 2017; 130(8): 950-6. https://dx.doi.org/10.4103/0366-6999.204112.
  10. Young V.J., Ahmad S.F., Duncan W.C., Horne A.W. The role of TGF-β in the pathophysiology of peritoneal endometriosis. Hum. Reprod. Update. 2017; 23(5): 548-59. https://dx.doi.org/10.1093/humupd/dmx016.
  11. Baranov V., Malysheva O., Yarmolinskaya M. Pathogenomics of endometriosis development. Int. J. Mol. Sci. 2018; 19(7). pii: E1852. https://dx.doi.org/10.3390/ijms19071852.
  12. Lin X., Dai Y., Xu W., Shi L., Jin X., Li C. et al. Hypoxia promotes ectopic adhesion ability of endometrial stromal cells via TGF-β1/Smad signaling in endometriosis. Endocrinology. 2018; 159(4): 1630-41. https://dx.doi.org/10.1210/en.2017-03227.
  13. Reis F.M., Petraglia F., Taylor R.N. Endometriosis: hormone regulation and clinical consequences of chemotaxis and apoptosis. Hum. Reprod. Update. 2013; 19(4): 406-18. https://dx.doi.org/10.1093/humupd/dmt010.
  14. Grimstad F.W., Decherney A. A review of the epigenetic contributions to endometriosis. Clin. Obstet. Gynecol. 2017; 60: 467-76. https://dx.doi.org/10.1097/GRF.0000000000000298.
  15. Laganà A.S., Vitale S.G., Salmeri F.M., Triolo O., Ban Frangež H., Vrtačnik-Bokal E. et al. Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med. Hypotheses. 2017; 103: 10-20. https://dx.doi.org/10.1016/j.mehy.2017.03.032.
  16. Donnez J., Binda M.M., Donnez O., Dolmans M.M. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil. Steril. 2016; 106(5): 1011-7. https://dx.doi.org/10.1016/j.fertnstert.2016.07.1075.
  17. Scutiero G., Iannone P., Bernardi G., Bonaccorsi G., Spadaro S., Volta C. A. et al. Oxidative stress and endometriosis: a systematic review of the literature. Oxid. Med. Cell. Longev. 2017; 2017: 7265238.
  18. Rius J., Guma M., Schachtrup C., Akassoglou K., Zinkernagel A.S., Nizet V. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature. 2008; 453(7196): 807-11. https://dx.doi.org/10.1038/nature06905.
  19. Webb J.D., Coleman M.L., Pugh C.W. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell. Mol. Life Sci. 2009; 66(22): 3539-54. https://dx.doi.org/10.1007/s00018-009-0147-7.
  20. Lu Z., Zhang W., Jiang S., Zou J., Li Y. Effect of oxygen tensions on the proliferation and angiogenesis of endometriosis heterograft in severe combined immunodeficiency mice. Fertil. Steril. 2014; 101: 568-76. https://dx.doi.org/10.1016/j.fertnstert.2013.10.039.
  21. Анциферова Ю.С., Посисеева Л.В., Сотникова Н.Ю., Елисеева М.А. Экспрессия скевенджер рецепторов перитонеальными макрофагами при наружном генитальном эндометриозе. Акушерство и гинекология. 2012; 2: 46-9.[Antsiferova Yu. S., Posiseeva L. V., Sotnikova N. Yu. Eliseeva M. A. Expression of scavenger receptors by peritoneal macrophages in external genital endometriosis. Obstetrics and gynecology. 2012; 2: 46-9 (in Russian)]
  22. Овакимян А.С., Кречетова Л.В., Вторушина В.В., Ванько Л.В., Козаченко И.Ф., Яроцкая Е.Л., Адамян Л.В. Содержание ИЛ-1β, ИЛ-8 и субстанции Р в плазме крови и перитонеальной жидкости пациенток с различными формами наружного генитального эндометриоза и хронической тазовой болью. Акушерство и гинекология. 2015; 3: 79-86. [Ovakimyan A. S., Krechetova L. V., Vtorushina V. V., Vanko L. V., Kozachenko I. V., Yarotskaya E. L., Adamyan L. V. the Contents of IL-1β, IL-8 and substance P in plasma and peritoneal fluid of patients with various forms of external genital endometriosis and chronic pelvic pain. Obstetrics and gynecology. 2015; 3: 79-86 (in Russian)]
  23. Анциферова Ю.С., Сотникова Н.Ю., Посисеева Л.В., Назаров С.Б. Иммунные механизмы развития генитального эндометриоза. Иваново; 2007. 314с. [Antsiferova Yu. S., Sotnikova N. Yu. Posiseeva L. V., Nazarov S. B. Immune mechanisms of genital endometriosis development. Ivanovo; 2007. 314c. (in Russian)]
  24. Ярмолинская М.И. Цитокиновый профиль перитонеальной жидкости и периферической крови больных с наружным генитальным эндометриозом. Журнал акушерства и женских болезней. 2008; 57(3): 30-4..[Yarmolinskaya M. I. Cytokine profile of peritoneal fluid and peripheral blood of patients with external genital endometriosis. Journal of obstetrics and women's diseases. 2008; 57(3): 30-4. (in Russian)]
  25. Omwandho C.O., Konrad L., Halis G., Oehmke F., Tinneberg H.R. Role of TGF-betas in normal human endometrium and endometriosis. Hum. Reprod. 2010; 25: 101-9. https://dx.doi.org/10.1093/humrep/dep382.
  26. Young V.J., Ahmad S.F., Brown J.K., Duncan W.C., Horne A.W. Peritoneal VEGF-A expression is regulated by TGF-ß1 through an ID1 pathway in women with endometriosis. Sci. Rep. 2015; 5: 16859. https://dx.doi.org/10.1038/srep16859.
  27. Young V.J., Ahmad S.F., Brown J.K., Duncan W.C., Horne A.W. ID2 mediates the transforming growth factor-ß1-induced Warburg-like effect seen in the peritoneum of women with endometriosis. Mol. Hum. Reprod. 2016; 22(9): 648-54. https://dx.doi.org/10.1093/molehr/gaw045.
  28. Young V.J., Brown J.K., Saunders P.T., Duncan W.C., Horne A.W. The peritoneum is both a source and target of TGF-β in women with endometriosis. PLoS One. 2014; 9(9): e106773. https://dx.doi.org/10.1371/journal.pone.0106773.
  29. Liu Y.G., Tekmal R., Binkley P.A., Nair H.B., Schenken R.S., Kirma N.B. Induction of endometrial epithelial cell invasion and c-fms expression by transforming growth factor beta. Mol. Hum. Reprod. 2009; 15(10): 665-73.
  30. Iwabuchi T., Yoshimoto C., Shigetomi H., Kobayashi H. Oxidative stress and antioxidant defense in endometriosis and its malignant transformation. Oxid. Med. Cell. Longev. 2015; 2015: 848595. https://dx.doi.org/10.1155/2015/848595.
  31. Iwabuchi T., Yoshimoto C., Shigetomi H., Kobayashi H. Cyst fluid hemoglobin species in endometriosis and its malignant transformation: the role of metallobiology. Oncol. Lett. 2016; 11(5): 3384-8.
  32. Yeo S.G., Won Y.S., Lee H.Y., Kim Y.I., Lee J.W., Park D.C. Increased expression of pattern recognition receptors and nitric oxide synthase in patients with endometriosis. Int. J. Med. Sci. 2013; 10(9): 1199-208. https://dx.doi.org/10.7150/ijms.5169.
  33. Silvestre-Roig C., Hidalgo A., Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood. 2016; 127(18): 2173-81. https://dx.doi.org/10.1182/blood-2016-01-688887.
  34. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front. Physiol. 2018; 9: 113. https://dx.doi.org/10.3389/fphys.2018.00113.
  35. Kobayashi H., Higashiura Y., Higetomi H., H.Kajihara H. Pathogenesis of endometriosis: The role of initial infection and subsequent sterile inflammation (Review). Mol. Med. Rep. 2014; 9(1): 9-15. https://dx.doi.org/10.3892/mmr.2013.1755.
  36. Fox S., Leitch A.E., Duffin R., Haslett C., Rossi A.G. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J. Innate Immun. 2010; 2(3): 216-27. https://dx.doi.org/10.1159/000284367.
  37. Watanabe A., Taniguchi F., Izawa M., Suou K., Uegaki T., Takai E. et al. The role of survivin in the resistance of endometriotic stromal cells to druginduced apoptosis. Hum. Reprod. 2009; 24(12): 31729. https://dx.doi.org/10.1093/humrep/dep305.
  38. Barragan F., Irwin J.C., Balayan S., Erikson D.W., Chen J.C., Houshdaran S. et al. Human endometrial fibroblasts derived from mesenchymal progenitors inherit progesterone resistance and acquire an inflammatory phenotype in the endometrial niche in endometriosis. Biol. Reprod. 2016; 94: 1-20. https://dx.doi.org/10.1095/biolreprod.115.136010.
  39. Khan M.A., Philip L.M., Cheung G., Vadakepeedika S., Grasemann H., Sweezey N., Palaniyar N. Regulating NETosis: increasing pH promotes NADPH oxidase-dependent NETosis. Front. Med. (Lausanne). 2018; 5: 19. https://dx.doi.org/10.3389/fmed.2018.00019.
  40. Behnen M., Möller S., Brozek A., Klinger M., Laskay T. Extracellular acidification inhibits the ROS-dependent formation of neutrophil extracellular traps. Front. Immunol. 2017; 8: 184. https://dx.doi.org/10.3389/fimmu.2017.00184.
  41. Yang H.L., Mei J., Chang K.K., Zhou W.J., Huang L.Q., Li M.Q. Autophagy in endometriosis. Am. J. Transl. Res. 2017; 9(11): 4707-25. eCollection 2017.
  42. Beste M.T., Pfäffle-Doyle N., Prentice E.A., Morris S.N., Lauffenburger D.A., Isaacson K.B., Griffith L.G. Endometriosis: molecular network analysis of endometriosis reveals a role for c-Jun-regulated macrophage activation. Sci. Transl. Med. 2014; 6(222): 222ra16. https://dx.doi.org/10.1126/scitranslmed.3007988.222ra16.
  43. Wu M.H., Lu C.W., Chuang P.C., Tsai S.J. Prostaglandin E2: the master of endometriosis? Exp. Biol. Med. 2010; 235(6): 668-77. https://dx.doi.org/10.1258/ebm.2010.009321.
  44. Ahn S.H., Edwards A.K., Singh S.S., Young S.L., Lessey B.A., Tayade C. IL-17A contributes to the pathogenesis of endometriosis by triggering proinflammatory cytokines and angiogenic growth factors. J. Immunol. 2015; 195(6): 2591-600. https://dx.doi.org/10.4049 / jimmunol.1501138.
  45. De Andrade V.T., Nácul A.P., Dos Santos B.R., Lecke S.B., Spritzer M., Morsch D.M. Circulating and peritoneal fluid interleukin-6 levels and gene expression in pelvic endometriosis. Exp. Ther. Med. 2017; 14(3): 2317-22. https://dx.doi.org/10.3892/etm.2017.4794.
  46. Hull M.L., Johan M.Z., Hodge W.L., Robertson S.A., Ingman W.V. Host-derived TGFB1 deficiency suppresses lesion development in a mouse model of endometriosis. Am. J. Pathol. 2012; 180(3): 880-7. https://dx.doi.org/10.1016/j.ajpath.2011.11.013.
  47. Gong D., Shi W., Yi S.J., Chen H., Groffen J., Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012; 13: 31. https://dx.doi.org/10.1186/1471-2172-13-31.
  48. Bacci M., Capobianco A., Monno A., Cottone L., DiPuppo F., Camisa B. et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am. J. Pathol. 2009; 175(2): 547-56. https://dx.doi.org/10.2353/ajpath.2009.081011.
  49. Choi H.J., Park M.J., Kim B.S., Choi H.J., Joo B., Lee K.S. et al. Transforming growth factor β1 enhances adhesion of endometrial cells to mesothelium by regulating integrin expression. BMB Rep. 2017; 50(8):429-34.
  50. Becker C.M., Rohwer N., Funakoshi T., Cramer T., Bernhardt W., Birsner A. et al. 2-methoxyestradiol inhibits hypoxia-inducible factor-1{alpha} and suppresses growth of lesions in a mouse model of endometriosis. Am. J. Pathol. 2008; 172(2): 534-44. https://dx.doi.org/10.2353/ajpath. 2008.061244.
  51. Avagliano A., Granato G., Ruocco M.R., Romano V., Belviso I., Carfora A. et al. Metabolic reprogramming of cancer associated fibroblasts: the slavery of stromal fibroblasts. Biomed. Res. Int. 2018; 2018: 6075403. https://dx.doi.org/10.1155/2018/6075403.
  52. Fosslien E. Cancer morphogenesis: role of mitochondrial failure. Ann. Clin. Lab. Sci. 2008; 38(4): 307-29.
  53. Guido C., Whitaker-Menezes D., Capparelli C., Balliet R., Lin Z., Pestell R.G. et al. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with ‘Warburg-like’ cancer metabolism and L-lactate production. Cell Cycle. 2012; 11(16): 3019-35.
  54. Xiong Y., Liu Y., Xiong W., Zhang L., Liu H., Du Y., Li N. Hypoxia-inducible factor 1α-induced epithelial-mesenchymal transition of endometrial epithelial cells may contribute to the development of endometriosis. Hum. Reprod. 2016; 31(6): 1327-38. https://dx.doi.org/10.1093/humrep/dew081.

Received 07.04.2019

Accepted 19.04.2019

About the Authors

Vanko L.V., Doctor of Medicine, professor, leading research worker in Laboratory of clinical immunology, National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation; 4, Oparin street, Moscow, Russian Federation, 117997; +7 (495) 438-11-83; e-mail: lvanko@mail.ru.
Korоtkova Tatiana Denisovna - postgraduate of the operative gynecology department National Medical Research Center for Obstetrics, Gynecology and Perinatology of Ministry of Healthcare of Russian Federation; 4, Oparin street, Moscow, Russian Federation, 117997, +7(962)960-55-52. e-mail: t-korotkova@mail.ru
Krechetova L.V., MD, head of clinical immunology laboratory National Medical Research Center for Obstetrics, Gynecology and Perinatology
of Ministry of Healthcare of Russian Federation; 4, Oparin street, Moscow, Russian Federation, 117997, +7-(495)-438-11-83. e-mail: k_l_v_@mail.ru.

For citations: L.V. Vanko, T.D. Korotkova, L.V. Krechetova. Role of hypoxia-inducible factor-1 alpha and transforming growth factor-beta 1 in the development of oxidative stress and immune dysbalance in endometriosis. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2019; (6): 14-22 (in Russian)
http://dx.doi.org/10.18565/aig.2019.6.14-22

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.