Use of vitamin D to maintain women’s reproductive health: realities and prospects

Maltseva L.I., Garifullova Yu.V., Yupatov Е.Yu.

1) Kazan State Medical Academy, Branch, Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Kazan, Russia; 2) Kazan State Medical University, Ministry of Health of the Russian Federation, Kazan, Russia
The authors have carried out an analysis of the literature available in the Russian and international databases Scopus, PubMed, and Web of Science, which is devoted to modern views on the abilities of vitamin D to maintain women’s reproductive health. Studying the mechanisms of vitamin D’s effects has made it possible to substantially expand our understanding of the potential preventive and therapeutic effects of the vitamin D hormonal system when following up patients with benign pathology of the reproductive organs. The biological effects of vitamin D are realized through several mechanisms and each is based on regulation of the expression of the genes involved in the processes of cell proliferation and differentiation, immune response, apoptosis, and angiogenesis. The evidence for the high activity of the vitamin D system in the tissues of the ovary, uterus, and breast has confirmed that vitamin D is involved in the local autocrine, paracrine, and endocrine regulation of proliferation and differentiation processes in the tissue; and clinical and experimental studies have demonstrated the effectiveness of vitamin D supplementation in polycystic ovary, uterine fibroids, endometriosis, diffuse mastopathy, and cervical intraepithelial neoplasia. At the same time, correction of vitamin D deficiency can be an effective method for primary prevention of neoplastic processes in the reproductive system, which absolutely necessitates a wide vitamin D screening. However, determination of only the circulating form of the vitamin is not enough to judge its activity at the tissue level; studies of the individual genetic and immunohistochemical parameters of the vitamin D system are needed to develop specific recommendations.

Keywords

vitamin D
vitamin D receptor
uterine fibroids
polycystic ovary
endometriosis
mastopathy

References

  1. Пальшина А.М., Пальшина С.Г., Сафонова С.Л., Пальшин В.Г. На заметку клиницисту: современный взгляд на метаболизм витамина D и полиморфизм гена рецептора витамина D. Вестник Северо-Восточного федерального университета им. М.К. Аммосова. Серия: Медицинские науки. 2018; 3: 34-42. [Palshina A.M., Palshina S.G., Safonova S.L., Palshin V.G. Note to the clinician: a modern view of vitamin D metabolism and vitamin D receptor gene polymorphism. Bulletin of the M.K. Ammosov North-Eastern Federal University. Series: Medical Sciences. 2018; 3: 34-42. (in Russian)].
  2. Abd-Elsalam E.A., Ismaeil N.A., Abd-Alsalam H.S. Vitamin D receptor gene polymorphisms and breast cancer risk among postmenopausal Egyptian women. Tumor Biol. 2015; 36(8): 642531. https://dx.doi.org/10.1007/s13277-015-3332-3.
  3. Пигарова Е.А., Рожинская Л.Я., Белая Ж.Е., Дзеранова Л.К., Каронова Т.Л., Ильин А.В., Мельниченко Г.А., Дедов И.И. Клинические рекомендации Российской ассоциации эндокринологов по диагностике, лечению и профилактике дефицита витамина D у взрослых. Проблемы эндокринологии. 2016; 62(4): 60-84. [Pigarova E.A., Rozhinskaya L. a., Belaya Zh.E., Dzeranova L.K., Karonova T.L., Ilyin A.V., Melnichenko G.A., Dedov I.I. Clinical guidelines of the Russian Association of Endocrinologists for the diagnosis, treatment and prevention of vitamin D deficiency in adults. Problems of endocrinology. 2016; 62(4): 60-84. (in Russian)].
  4. Colonese F., Laganà A.S., Colonese E., Sofo V., Salmeri F.M., Granese R. et al. The pleiotropic effects of vitamin D in gynaecological and obstetric diseases: an overview on a hot topic. Biomed. Res. Int. 2015; 2015: 986281. https://dx.doi.org/10.1155/2015/986281.
  5. Dormanen M.C., Bishop J.E., Hammond M.W., Okamura W., Nemere I., Noman A. Nonnuclear effects of the steroid hormone 1 alpha,25(OH)2-vitamin D3: analogs are able to functionally differentiate between nuclear and membrane receptors. Biochem. Biophys. Res. Commun. 1994; 201(1): 394-401. https://dx.doi.org/10.1006/bbrc.1994.1714.
  6. Кузнецова И.В. Лечебные и профилактические эффекты витамина D при гинекологических заболеваниях, связанных с избыточной пролиферацией. Акушерство и гинекология. 2018; 4: 138-43. [Kuznetsova I.V. Therapeutic and preventive effects of vitamin D in gynecological diseases associated with excessive proliferation. Obstetrics and gynecology. 2018; 4: 138-43. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.4.138-143.
  7. Баклейчева М.О., Ковалева И.В., Беспалова О.Н., Коган И.Ю. Влияние витамина D на репродуктивное здоровье женщины. Журнал акушерства и женских болезней. 2018; 67(3): 4-19. [Bakleicheva M.O., Kovaleva I.V., Bespalova O.N., Kogan I.Yu. The effect of vitamin D on a woman’s reproductive health. Journal of obstetrics and women’s diseases. 2018; 67(3): 4-19.(in Russian)].
  8. Беспалова О.Н., Баклейчева М.О., Ковалева И.В., Толибова Г.Х., Траль Т.Г., Коган И.Ю. Экспрессия витамина D и его рецепторов в ворсинчатом хорионе при неразвивающейся беременности. Акушерство и гинекология. 2019; 11: 89-96. [Bespalova O.N., Bakleicheva M.O., Kovaleva I.V., Tolibova G.Kh., Tral T.G., Kogan I.Yu. Expression of vitamin D and its receptors in the villous chorion in non-developing pregnancy. Obstetrics and gynecology. 2019; 11: 89-96. (in Russian]. https://dx.doi.org/10.18565/aig.2019.11.89-96.
  9. Pludowski P., Holickb M.F., Pilz S., Wagnere C.L., Hollise B.W., Grant W.B. et al. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality - a review of recent evidence. Autoimmun. Rev. 2013; 12(10): 976-89. https://dx.doi.org/10.1016/j.autrev.2013.02.004.
  10. Thomson R.L., Spedding S., Buckley J.D. Vitamin D in the aetiology and management of polycystic ovary syndrome. Clin. Endocrinol. 2012; 77(3): 34350. https://dx.doi.org/10.1111/j.1365-2265.2012.04434.x.
  11. Kuyucu Y., Sencar L., Özgül Tap, Ufuk Özgü Mete. Investigation of the effects of vitamin D treatment on the ovarian AMH receptors in a polycystic ovary syndrome experimental odel: an ultrastructural and immunohistochemical study. Reprod. Biol. 2020; 20(1): 2532. https://dx.doi.org/10.1016/j.repbio.2020.01.001.
  12. Pittas A.G., Lau J., Hu F.B., Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007; 92(6): 201729. https://dx.doi.org/10.1210/jc.2007-0298.
  13. Maestro B., Dávila N., Carranza M.C., Calle C. Identification of a vitamin D response element in the human insulin receptor gene promoter. J. Steroid Biochem. Mol. Biol. 2003; 84(2): 22330. https://dx.doi.org/10.1016/S0960-0760(03)00032-3.
  14. Fang F., Ni K., Cai Y., Shang J., Zhang X., Xiong C. Effect of vitamin D supplementation on polycystic ovary syndrome: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Clin. Pract. 2017; 26: 53-60. https://dx.doi.org/10.1016/j.ctcp.2016.11.008.
  15. Chang H.M., Klausen C., Leung P.C. Antimüllerian hormone inhibits folliclestimulating hormone-induced adenylyl cyclase activation, aromatase expression, and estradiol production in human granulosa-lutein cells. Fertil. Steril. 2013; 100(2): 58592. e1. https://dx.doi.org/10.1016/j.fertnstert.2013.04.019.
  16. Irani M., Minkoff H., Seifer D.B., Merhi Z. Vitamin D increases serum levels of the soluble receptor for advanced glycation end products in women with PCOS. J. Clin. Endocrinol. Metab. 2014; 99(5): E88690. https://dx.doi.org/10.1210/jc.2013-437.
  17. Cappya H., Giacobinib P., Pignyc P., Bruyneela A., Leroy-Billiarda M., Dewaillya D. et al. Low vitamin D3 and high anti-Müllerian hormone serum levels in thepolycystic ovary syndrome (PCOS): Is there a link? Ann. Endocrinol. (Paris). 2016; 77(5): 5939. https://dx.doi.org/10.1016/j.ando.2016.02.001.
  18. Merhi Z. Advanced glycation end products and their relevance in female reproduction. Hum. Reprod. 2013; 29(1): 13545. https://dx.doi.org/10.1093/humrep/det383.
  19. Merhi Z., Irani M., Doswell A.D., Ambroggio J. Follicular fluid soluble receptor for glycation end-products (sRAGE): a potential indicator of ovarian reserve. J. Clin. Endocrinol. Metab. 2014; 99(2): E22633. https://dx.doi.org/10.1210/jc.2013-3839.
  20. Ott J., Wattar L., Kurz C., Seemann R., Huber J.C., Mayerhofer K. et al. Parameters for calcium metabolism in women with polycystic ovary syndrome who undergo clomiphene citrate stimulation: a prospective cohort study. Eur. J. Endocrinol. 2012; 166(5): 897902. https://dx.doi.org/10.1530/EJE-11-107.
  21. Pal L., Zhang H., Williams J., Santoro N.F., Diamond M.P., Schlaff W.D. et al. Vitamin D status relates to reproductive outcome in women with polycystic ovary syndrome: Secondary analysis of a Multicenter Randomized controlled trial. J. Clin. Endocrinol. Metab. 2016; 101(8): 302735. https://dx.doi.org/10.1210/jc.2015-4352.
  22. Corachan A., Ferrero H., Aguilar A., Garcia N., Monleon J., Faus A. et al. Inhibition of tumor cell proliferation in human uterine leiomyomas by vitamin D via Wnt/β-catenin pathway. Fertil. Steril. 2019; 111(2): 397-407. https://dx.doi.org/10.1016/j.fertnstert.2018.10.008.
  23. Sharan C., Halder S.K., Thota C., Jaleel T., Sangeeta Nair D.V.M., Al-Hendy A. Vitamin D inhibits proliferation of human uterine leiomyoma cells via catechol- O -methyltransferase. Fertil. Steril. 2011; 95(1): 247-53. https://dx.doi.org/10.1016/j.fertnstert.2010.07.1041.
  24. Brakta S., Diamond J.S., Al-Hendy A., Diamond M.P., Halder S.K. Role of vitamin D in uterine fibroid biology. Fertil. Steril. 2015; 104(3): 698-706. https://dx.doi.org/10.1016/j.fertnstert.2015.05.031.
  25. Aharon D., Mandelberger A., Ascher-Walsh C., Fenske S. The effect of vitamin D repletion in patients with leiomyomas. Fertil. Steril. 2018; 109(3): Е7. https://dx.doi.org/10.1016/j.fertnstert.2018.02.023.
  26. Corachan A., Ferrero H., Escrig J., Monleon J., Faus A., Technician L. et al. Vitamin D long term treatment decreases human uterine leiomyoma size through specific molecular mechanisms in a xenograft animal model. Fertil. Steril. 2019; 112(3, Suppl.): E86-7. https://dx.doi.org/10.1016/j.fertnstert.2019.07.347.
  27. Arjeh S., Darsareh F., Abedi Asl Z., Azizi Kutenaei M. Effect of oral consumption of vitamin D on uterine fibroids: A randomized clinical trial. Complement. Ther. Clin. Pract. 2020; 39: 101159. https://dx.doi.org/10.1016/j.ctcp.2020.101159.
  28. Sabry M., Halder S.K., Allah A.S.A., Roshdy E., Rajaratnam V., Al-Hendy A. Serum vitamin D3 level inversely correlates with uterine fibroid volume in different ethnic groups: a cross-sectional observational study. Int. J. Womens Health. 2013; 5: 93-100. https://dx.doi.org/10.2147/IJWH.S38800.
  29. Baird D.D., Hill M.C., Schectman J.M., Hollis B.W. Vitamin D and the risk of uterine fibroids. Epidemiology. 2013; 24(3): 44753. https://dx.doi.org/10.1097/EDE.0b013e31828acca0.
  30. Mitro S.D., Zota A.R. Vitamin D and uterine leiomyoma among a sample of US women: Findings from NHANES, 20012006. Reprod. Toxicol. 2015; 57: 81-6. https://dx.doi.org/10.1016/j.reprotox.2015.05.013.
  31. Al-Hendy A., Diamond M.P., El-Sohemy A., Halder S.K. 1,25-Dihydroxyvitamin D3 regulates expression of sex steroid receptors in human uterine fibroid cells. J. Clin. Endocrinol. Metab. 2015; 100(4): E57282.
  32. Ali M., Laknaur A., Shaheen S.M., Sabri N.A., Al-Hendy A. Vitamin D synergizes the antiproliferative, apoptotic, antifibrotic and anti-inflammatory effects of ulipristal acetate against human uterine fibroids. Fertil. Steril. 2017; 108(3): e66. https://dx.doi.org/10.1016/J.FERTNSTERT.2017.07.208.
  33. Cermisoni G.C., Alteri A., Corti L., Rabellotti E., Papaleo E., Viganò P. et al. Vitamin D and endometrium: a systematic review of a neglected area of research. Int. J. Mol. Sci. 2018; 19(8): 2320. https://dx.doi.org/10.3390 /ijms19082320.
  34. Abdullah U.H., Lalani S., Syed F., Arif S., Rehman R. Association of vitamin D with outcome after intra cytoplasmic sperm injection. J. Matern. Fetal Neonatal Med. 2017; 30(1): 117-20. https://dx.doi.org/10.3109/14767058.2016.1163680.
  35. Oso C., Sehring J., Mandell H., Grimm L., Anderson J., Radley E. et al. Here comes the sun: serum vitamin D levels and intrauterine insemination success in women of advanced maternal age. Fertil. Steril. 2020; 113(4): e23. https://dx.doi.org/10.1016/j.fertnstert.2020.02.051.
  36. Du H., Daftary G.S., Lalwani S.I., Taylor H.S. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol. Endocrinol. 2005; 19(9): 222233. https://dx.doi.org/10.1210/me.2004-0336.
  37. Tabassi Z., Bagheri S., Samimi M., Gilasi H.R., Bahmani F., Chamani M. et al. Clinical and metabolic response to vitamin D supplementation in endometrial hyperplasia: a Randomized, Double-Blind, Placebo-Controlled Trial. Horm. Cancer. 2017; 8(3): 185-95. https://dx.doi.org/10.1007/s12672-017-0290-9.
  38. Денисова А.С., Ярмолинская М.И. Роль витамина D в патогенезе генитального эндометриоза. Журнал акушерства и женских болезней. 2017; 66(6): 818. [Denisova A.S., Yarmolinskaya M.I. The role of vitamin D in the pathogenesis of genital endometriosis. Journal of obstetrics and women’s diseases. 2017; 66(6): 81-8. (in Russian)]. https://dx.doi.org/10.17816/JOWD66681-88.
  39. Harris H.R., Chavarro J.E., Malspeis S., Willett W.C., Missmer S.A. Dairy-food, calcium, magnesium, and vitamin D intake and endometriosis: a prospective cohort study. Am. J. Epidemiol. 2013; 177(5): 42030. https://dx.doi.org/10.1093/aje/kws247.
  40. Agic A., Xu H., Altgassen C., Noack F., Wolfler M.M., Diedrich K. et al. Relative expression of 1,25-dihydroxyvitamin D3 receptor, vitamin D 1 alpha-hydroxylase, vitamin D 24-hydroxylase, and vitamin D 25-hydroxylase in endometriosis and gynecologic cancers. Reprod. Sci. 2007; 14(5): 48697.
  41. Qiu Y., Yuan S., Wang H. Vitamin D status in endometriosis: a systematic review and meta‑analysis. Arch. Gynecol. Obstet. 2020; 302(1): 141-52. https://dx.doi.org/10.1007/s00404-020-05576-5.
  42. Фархат К.Н., Савилова А.М., Макиян З.Н., Адамян Л.В. Эндометриоз: роль стволовых клеток в развитии заболевания (обзор литературы). Проблемы репродукции. 2016; 22(1): 20-7. [Farhat K.N., Savilova A.M., Makiyan Z.N., Adamyan L.V. Endometriosis: the role of stem cells in the development of the disease (a literature review). Problems of reproduction. 2016; 22(1): 20-7. (in Russian)].
  43. Delbandi A.A., Mahmoudi M., Shervin A., Zarnani A.H. 1,25-dihydroxy vitamin D3 modulates endometriosis-related features of human endometriotic stromal cells. Am. J. Reprod. Immunol. 2016; 75(4): 46173. https://dx.doi.org/10.1111/aji.12463.
  44. Laschke M., Giebels C., Menger M. Vasculogenesis: a new piece of the endometriosis puzzle. Hum. Reprod. Update. 2011; 17(5): 628-36. https://dx.doi.org/10.1093/humupd/dmr023.
  45. Becker C., Beaudry P., Funakoshi T., Benny O., Zaslavsky A., Zurakowski D. et al. Circulating endothelial progenitor cells are up-regulated in a mouse model of endometriosis. Am. J. Pathol. 2011; 178(4): 1782-91. https://dx.doi.org/10.1016/j.ajpath.2010.12.037.
  46. Van Etten E., Decallonne B., Verlinden L., Verstuyf A., Bouillon R., Mathieu C. Analogs of 1α,25-dihydroxyvitamin D3 as pluripotent immunomodulators. J. Cell. Biochem. 2003; 88(2): 223-6. https://dx.doi.org/10.1002/jcb.10329.
  47. Krishna A.V., Feldman D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu. Rev. Pharmacol. Toxicol. 2011; 51: 31136. https://dx.doi.org/10.1146/annurev-pharmtox-010510-100611.
  48. Gorham E., Garland C.F., Garland F. Acid haze air pollution and breast and colon cancer in 20 Canadian cities. Can. J. Publ. Health. 1989; 80(2):96-100.
  49. Garland F., Garland C., Gorham E., Young J.F. Geographic variation in breast cancer mortality in the United States: a hypothesis involving exposure to solar radiation. Prev. Med. 1990; 19(6): 614-22. https://dx.doi.org/10.1016/0091-7435(90)90058-r.
  50. Eliassen A.H., Warner E.T., Rosner B., Colins L.C., Beck A.H., Quintana L.M. Plasma 25-hydroxyvitamin D and risk of breast cancer in women followed over 20 years. Cancer Res. 2016; 76(18): 5423-30. https://dx.doi.org/10.1158/0008-5472.CAN-16-03.
  51. Rejnmarka L., Tietze A., Vestergaarda P., Buhl L., Lehbrink M., Heickendorff L. Reduced pre-diagnostic 25-hydroxyvitamin D levels in women with breast cancer. Bone. 2009; 44(Suppl. 1): S162-7.
  52. Yaghjyan L., Colditz G.A., Drake B. Vitamin D and mammographic breast density: a systematic review. Cancer Causes Control. 2012; 23(1): 113.
  53. Lopes N., Sousa B., Martins D., Gomes M., Vieira O., Veronese L.A. Alterations in vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions. BMC Cancer. 2010; 10: 483. https://dx.doi.org/10.1186/1471-2407-10-483.
  54. Zhalehjoo N., Shakiba Y., Panjehpour M. Gene expression profiles of CYP24A1 and CYP27B1 in malignant and normal breast tissues. Mol. Med. Rep. 2017; 15(1): 467-73.
  55. Мальцева Л.И., Гарифуллова Ю.В., Калинкина М.Г. Роль витамина D в снижении плотности молочных желез у женщин с диффузной формой мастопатии. Практическая медицина. 2018; 16(6): 111-7. [Maltseva L.I., Garifullova Yu.V., Kalinkina M.G. The role of vitamin D in reducing breast density in women with diffuse mastopathy. Practical medicine. 2018; 16(6): 111-7. (in Russian)].
  56. Гусев Е.И., Захарова И.Н., ред. Витамин D – смена парадигмы. М.: ТорусПресс; 2015. 464 с. [Gusev E.I., Zakharova I.N., ed. Vitamin D is a paradigm shift. M.: Toruspress. 2015; 464 p. (in Russian)].
  57. Vahedpoor Z., Jamilian M., Bahmani F., Aghadavod E., Karamali M., Kashanian M. et al. Effects of long-term vitamin D supplementation on regression and metabolic status of cervical intraepithelial neoplasia: a randomized, double-blind, placebo-controlled trial. Horm. Cancer. 2017; 8(1): 5867. https://dx.doi.org/10.1007/s12672-016-0278-x.
  58. Wang G., Lei L., Zhao X., Zhag J., Zhou M., Nan K. Calcitriol inhibits cervical cancer cell proliferation through downregulation of HCCR1 expression. Oncol. Res. 2014; 22(5-6): 3019. https://dx.doi.org/10.3727/096504015X14424348425991.
  59. Громова О.А., Торшин И.Ю., Фролова Д.Е., Лапочкина Н.П., Лиманова О.А. О противовирусных эффектах витамина D. Медицинский совет. 2020; 3: 152-8. [Gromova O.A., Torshin I.Yu., Frolova D.E., Lapochkina N.P., Limanova O.A. On the antiviral effects of vitamin D. Medical Council. 2020; 3: 152-8. (in Russian)]. https://dx.doi.org/10.21518/2079-701X-2020-3-152-158.

Received 11.09.2020

Accepted 16.09.2020

About the Authors

Larisa I. Maltseva, PhD, full professor, Kazan state medical academy – branch of FGBOU DPO RMANPO, Ministry of Health of Russia.
Tel.: +7(843)236-68-92. ORCID: 0000-0003-0999-4374. 36 Butlerova str., Kazan, Russia, 420015.
Yulia V. Garifullova, PhD, assistant, V.S. Gruzdev Department of Obstetrics and Gynecology, Kazan state medical university. Tel.: +7(843)236-08-73.
E-mail: gamil.garifullov@yandex.ru. ORCID: 0000-0002-4336-7828. 49 Butlerova str., Kazan, Russia, 420012.
Evgenii Yu. Iupatov, PhD, assistant professor, Head of the Department of obstetrics and gynecology, Kazan state medical academy – branch of FGBOU DPO RMANPO, Ministry of Health of Russia. Tel.: +7(843)236-68-92. E-mail: e.yupatov@mcclinics.ru. ORCID: 0000-0001-8945-8912.
36 Butlerova str., Kazan, Russia, 420015.

For citation: Maltseva L.I., Garifullova Yu.V., Yupatov Е.Yu. Use of vitamin D to maintain women’s reproductive health: realities and prospects.
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2020; 10: 174-181 (in Russian).
https://dx.doi.org/10.18565/aig.2020.10.174-181

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.