Use of omics technologies to solve the problems of reproductive medicine

Drapkina Yu.S., Timofeeva A.V., Chagovets V.V., Kononikhin A.S., Frankevich V.E., Kalinina E.A.

National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia, Moscow 117997, Ac. Oparina str. 4, Russia
The authors have carried out a systems analysis of the data available in the current literature on the assessment of reproductive health by the metabolomic, proteomic, and transcriptomic profiles of germ cells and embryos at early developmental stages in order to improve the protocols of assisted reproductive technology (ART) programs. In recent years, scientists have paid close attention to the use of omics technologies for fertility assessment. The paper presents the results of embryo viability assessment by the metabolomic (analysis of the levels of carbohydrate and amino acids in the embryonic culture medium); proteomic (analysis of the protein spectrum in the blastocoel cavity, blastocyst secretome), and transcriptomic (studies of small noncoding RNAs during oogenesis, spermatogenesis, and early embryonic development) profiles. The results of the performed studies confirm the prospects and relevance of the analysis of the proteinaceous, metabolomic, and transcriptomic profiles of both blastocoel and blastocyst culture fluids to create a molecular portrait of embryos with different morphometric parameters and to develop diagnostic and prognostic test systems to assess the viability of an embryo and its implantation potential in the framework of ART programs.

Keywords

assisted reproductive technology
infertility
noncoding RNAs (ncRNAs)
microRNA (miRNA)
piwiRNA (piRNA)
endogenous small interfering RNAs (endo-siRNAs)
messenger RNA (mRNA)
mass spectrometry
metabolome
proteome
in vitro fertilization
embryo transfer
embryo quality
culture medium
pregnancy

References

1. Kupka M.S., Ferraretti A.P., de Mouzon J., Erb K., D’Hooghe T., Castilla J.A. et al.; European IVF-Monitoring Consortium, for the European Society of Human Reproduction and Embryology. Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE. Hum. Reprod. 2014; 29(10): 2099-113.

2. Кузьмичев Л.Н., Смольникова В.Ю., Калинина Е.А., Дюжева Е.В. Принципы комплексной оценки и подготовки эндометрия у пациенток программ вспомогательных репродуктивных технологий. Акушерство и гинекология. 2010; 5: 32-6. [Kuzmichev L.N., Smolnikova V.Yu., Kalinina Ye.A., Dyuzheva Ye.V. The principles of complex evaluation and preparation of the endometrium in patients of assisted reproductive technology programs. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2010; (5): 32-6. (in Russian)]

3. Смольникова В.Ю., Калинина Е.А., Краснощока О.Е, Донников А.Е., Бурменская О.В., Трофимов Д.Ю., Сухих Г.Т. Возможности неинвазивной оценки состояния ооцита и эмбриона при проведении программ ВРТ по профилю экспрессии мРНК факторов роста в фолликулярной жидкости. Акушерство и гинекология. 2014; 9: 36-43. [Smolnikova V.Yu., Kalinina E.A., Krasnoshchoka O.E., Donnikov A.E., Burmenskaya O.E., Trofimov D.Yu., Sukhikh G.T. Possibilities for noninvasive oocyte and embryo evaluation when implementing assisted reproductive technology programs for follicular-fluid growth factor mRNA expression. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2014; (9): 36-43. (in Russian)]

4. Bhattacharya S., Johnson N., Tijani H.A., Hart R., Pandey S., Gibreel A.F. Female infertility. BMJ Clin. Evid. 2010; 2010. pii: 0819.

5. Harton G., Munne S., Surrey M., Grifo J., Kaplan B., McCulloh D. et al. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization. Fertil. Steril. 2013; 100(6): 1695-703.

6. Gardner D., Schoolcraft W. In-vitro culture of human blastocyst. Towards reproductive certainty: fertility and genetics beyond. Carnforth: Parthenon Publ.; 1999: 378-88.

7. Gardner D., Balaban B. Assessment of human embryo development using morphological criteria in an era of time-lapse, algorithms and ‘OMICS’: is looking good still important? Mol. Hum. Reprod. 2016;22(10): 704-18.

8. Egea R., Puchalt N., Escrivá M., Varghese A. OMICS: Current and future perspectives in reproductive medicine and technology. J. Hum. Reprod. Sci. 2014; 7: 73-92.

9. Varghese A., Goldberg E., Bhattacharyya A., Agarwal A. Emerging technologies for the molecular study of infertility, and potential clinical applications. Reprod. Biomed. Online. 2007; 15(4): 451-6.

10. Gardner D., Lane M., Stevens J., Schoolcraft W. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil. Steril. 2001; 76(6): 1175-80.

11. Renard J., Philippon A., Menezo Y. In-vitro uptake of glucose by bovine blastocysts. J. Reprod. Fertil. 1980; 58(1): 161-4.

12. Gardner D., Wale P., Collins R., Lane M. Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Hum. Reprod. 2011; 26(8): 1981-6.

13. Crosby I., Gandolfi F., Moor R. Control of protein synthesis during early cleavage of sheep embryos. J. Reprod. Fertil. 1988; 82(2):769-75.

14. Edwards L., Williams D., Gardner D. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH. Hum. Reprod. 1998; 13(12): 3441-8.

15. Liu Z., Foote R. Development of bovine embryos in KSOM with added superoxide dismutase and taurine and with five and twenty percent O2. Biol. Reprod. 1995; 53(4): 786-90.

16. Devreker F., Hardy K., Van den Bergh M., Vannin A., Emiliani S., Englert Y. Amino acids promote human blastocyst development in vitro. Hum. Reprod. 2001; 16(4): 749-56.

17. Lane M., Gardner D. Nonessential amino acids and glutamine decrease the time of the first three cleavage divisions and increase compaction of mouse zygotes in vitro. J. Assist. Reprod. Genet. 1997; 14(7): 398-403.

18. Houghton F., Hawkhead J., Humpherson P., Hogg J., Balen A., Rutherford A., Leese H.J. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 2002; 17(4): 999-1005.

19. Katz-Jaffe M., Linck D., Schoolcraft W., Gardner D. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction. 2005; 130(6): 899-905.

20. Poli M., Ori A., Child T., Jaroudi S., Spath K., Beck M., Wells D. Characterization and quantification of proteins secreted by single human embryos prior to implantation. EMBO Mol. Med. 2015; 7(11): 1465-79.

21. Tedeschi G., Albani E., Borroni M., Parini V., Brucculeri A., Maffioli E. Proteomic profile of maternal-aged blastocoel fluid suggests a novel role for ubiquitin system in blastocyst quality. J. Assist. Reprod. Genet. 2017; 34(2): 225-38.

22. Jensen P., Beck H., Petersen J., Hreinsson J., Wanggren K., Laursen S. et al. Proteomic analysis of human blastocoel fluid and blastocyst cells. Stem Cells Dev. 2013; 22(7): 1126-35.

23. Dominguez F., Pellicer A., Simón C. The human embryo proteome. Reprod. Sci. 2009; 16(2): 188-90.

24. Sturmey R., Bermejo-Alvarez P., Gutierrez-Adan A., Rizos D., Leese H., Lonergan P. Amino acid metabolism of bovine blastocysts: a biomarker of sex and viability. Mol. Reprod. Dev. 2010; 77(3): 285-96.

25. Seidler E., Gemani D., Ocalii O., Sakkas D. Utilization of a novel ultrasensitive digital immunoassay platform to measure interleukin-6 in blastocyst culture media. Fertil. Steril. 2017; 107(3, Suppl.): e16.

26. Suh N., Baehner L., Moltzahn F., Melton C., Shenoy A., Chen J., Blelloch R. Micro RNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 2012; 20(3): 271-7.

27. Chua J., Armugam A., Jeyaseelan K. MicroRNAs: biogenesis, function and applications. Curr. Opin. Mol. Ther. 2009; 11(2): 189-99.

28. Song R., Hennig G., Wu Q., Jose C., Zheng H., Yan W. Male germ cells express abundant endogenous siRNAs. Proc. Natl. Acad. Sci. USA. 2011; 108(32):13159-64.

29. Houwing S., Kamminga L., Berezikov E., Cronembold D., Girard A., Elst H. et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell. 2007; 129(1): 69-82.

30. Girard A., Sachidanandam R., Hannon G., Carmell M. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006; 442(7099): 199-202.

31. Hirakata S., Siomi M. piRNA biogenesis in the germline: From transcription of piRNA genomic sources to piRNA maturation. Biochim. Biophys. Acta. 2016; 1859(1): 82-92.

32. Abd E., Naby W., Hagos T. Expression analysis of regulatory microRNAs in bovine cumulus oocyte complex and preimplantation embryos. Zygote. 2013;21(1): 31-51.

33. Wright E., Hale B., Yang C., Njoka J., Ross J. MicroRNA-21 and PDCD4 expression during in vitro oocyte maturation in pigs. Reprod. Biol. Endocrinol. 2016;14: 21.

34. Watanabe T., Totoki Y., Toyoda A., Kaneda M., Kuramochi-Miyagawa S., Obata Y. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature. 2008; 453(7194): 539-43.

35. Tang F., Kaneda M., O’Carroll D., Hajkova P., Barton S.C., Sun Y.A. et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007; 21(6): 644-8.

36. Roovers E.F., Rosenkranz D., Mahdipour M., Han C.T., He N., Chuva de Sousa Lopes S.M. et al. Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep. 2015; 10(12): 2069-82.

37. Ketting R. The many faces of RNAi. Dev. Cell. 2011; 20(2): 148-61.

38. De Mateo S., Sassone-Corsi P. Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin. Cell Dev. Biol. 2014; 29: 84-92.

39. Tong M., Mitchell D., Evanoff R., Griswold M. Expression of Mirlet7 family microRNAs in response to retinoic acid-induced spermatogonial differentiation in mice. Biol. Reprod. 2011; 85(1): 189-97.

40. Marcon E., Babak T., Chua G., Hughes T., Moens P. miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res. 2008; 16(2): 243-60.

41. Liang X., Zhou D., Wei C., Luo H., Liu J., Fu R., Cui S. MicroRNA-34c enhances murine male germ cell apoptosis through targeting ATF1. PLoS One. 2012; 7(3): e33861.

42. Yu Z., Raabe T., Hecht N. MicroRNA MiR-122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol. Reprod. 2005; 73(3): 427-33.

43. Dai L., Tsai-Morris C., Sato H., Villar J., Kang J., Zhang J., Dufau M. Testis-specific miRNA-469 up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region: implications of its role in germ cell development. J. Biol. Chem. 2011; 286(52):44306-18.

44. Beyret E., Liu N., Lin H. piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism Cell Res. 2012; 22(10): 1429-39.

45. Vourekas A., Zheng Q., Alexiou P., Maragkakis M., Kirino Y., Gregory B.D., Mourelatos Z. Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat. Struct. Mol. Biol. 2012; 19(8): 773-81.

46. Luo L., Hou C., Yang W. Small non-coding RNAs and their associated proteins in spermatogenesis. Gene. 2016; 578(2): 141-57.

47. Siomi M., Sato K., Pezic D., Aravin A. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 2011; 12(4): 246-58.

48. Tadros W., Goldman A.L., Babak T., Menzies F., Vardy L., Orr-Weaver T. et al. SMAUG is a major regulator of maternal mRNA destabilization in Drosophila and its translation is activated by the PAN GU kinase. Dev. Cell. 2007; 12(1): 143-55.

49. Mei Y., Wang Y., Kumari P., Shetty A.C., Clark D., Gable T. et al. A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat. Commun. 2015; 6: 7316.

50. Giraldez A., Mishima Y., Rihel J., Grocock R., Van Dongen S., Inoue K. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 2006; 312(5770): 75-9.

51. Svoboda P., Flemr M. The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency. EMBO Rep. 2010; 11(8): 590-7.

52. Han B., Wang W., Li C., Weng Z., Zamore P. PiRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production”. Science. 2015; 348(6236): 817-21.

53. Franasiak J., Forman E., Hong K., Werner M., Upham K., Treff N., Scott R. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril. 2014; 101(3): 656-63. e1.

54. Rosenbluth E., Shelton D., Sparks A., Devor E., Christenson L., Van Voorhis B. MicroRNA expression in the human blastocyst. Fertil. Steril. 2013; 99(3): 855-61. e3.

55. Capalbo A., Ubaldi F.M., Rienzi L., Scott R., Treff N. Detecting mosaicism in trophectoderm biopsies: current challenges and future possibilities. Hum. Reprod. 2017; 32(3): 492-8.

56. Noli L., Capalbo A., Dajani Y., Cimadomo D., Bvumbe J., Rienzi L. et al. Human embryos created by embryo splitting secrete significantly lower levels of miRNA-30c. Stem Cells Dev. 2016; 25(24): 1853-62.

57. Viswanathan S.R., Mermel C.H., Lu J., Lu C.W., Golub T.R., Daley G.Q. microRNA expression during trophectoderm specification. PLoS One. 2009; 4(7): e6143.

Received 13.02.2018

Accepted 02.03.2018

About the Authors

Drapkina, Yulia S., PhD student at the Department of Reproductive Health named after professor Leonov, National Medical Research Center of Obstetrics, Gynecology,
and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79169500745. E-mail: julia.drapkina@gmail.com
Timofeeva, Angelika V., PhD, Senior Researcher of Laboratory of Transcriptomic at the Department of Systems Biology in Reproduction, National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954381341. E-mail avtimofeeva28@gmail.com
Chagovets, Vitaliy V., PhD, Senior Researcher of the Laboratory of Proteomics and Metabolomics in Human Reproduction at the Department of Systems Biology
in Reproduction, National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79265626590. E-mail: vvchagovets@gmail.com
Kononikhin, Alexey S., PhD, Researcher of the Laboratory of Proteomics and Metabolomics in Human Reproduction at the Department of Systems Biology in Reproduction, National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +79167854781. E-mail: konoleha@yandex.ru
Frankevich, Vladimir E., PhD, chief of the Department of Systems Biology in Reproduction, National Medical Research Center of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia. 117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: +74954380788. E-mail: v_frankevich@oparina4.ru
Kalinina Elena Anatolievna, MD, Associate Professor, Chief of the Department of Reproductive Health named after professor Leonov, National Medical Research Center
of Obstetrics, Gynecology, and Perinatology named after Academician V.I. Kulakov, Ministry of Health of Russia.
117997, Russia, Moscow, Ac. Oparina str. 4. Tel.: 74954381341. E-mail: e_kalinina@oparina4.ru

For citations: Drapkina Yu.S., Timofeeva A.V., Chagovets V.V., Kononikhin A.S., Frankevich V.E., Kalinina E.A. Use of omics technologies to solve the problems of reproductive medicine. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2018; (9): 34-42. (in Russian)
https://dx.doi.org/10.18565/aig.2018.9.34-42.

Similar Articles

By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.