ISSN 0300-9092 (Print)
ISSN 2412-5679 (Online)

Principles for organizing a preclinical study of autologous CD34+ cells modified to express arylsulfatase A for the treatment of metachromatic leukodystrophy

Iurova M.V., Popov K.V., Shevtsova Yu.A., Pavlovich S.V.

1) Academician V.I. Kulakov National Medical Research Centre for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia; 2) I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Moscow, Russia

Metachromatic leukodystrophy (MLD) is an orphan autosomal recessive lysosomal disorder belonging to the group of storage diseases. It is caused by pathogenic variants of the ARSA gene encoding the enzyme arylsulfatase A (ASA) which lead to a decrease or absence of the gene activity and the subsequent accumulation of sulfatides (sulfate-containing glycosphingolipids) in the central and peripheral nervous system, primarily in membrane structures. This causes neurodegeneration, manifesting as progressive motor and cognitive impairment. There are currently no registered treatment options for MLD in the Russian Federation. Treatment is limited to supportive methods (e.g., physical therapy, muscle relaxants, pain medications) aimed at preventing complications and maintaining patients’ quality of life and hematopoietic stem cell transplantation from a healthy donor. This analytical review describes the methodology used in the organization of a preclinical trial of ASA-expressing CD34+ hematopoietic stem cell transplantation as a potential treatment for MLD. The review also presents regulatory requirements for validating results obtained in biological models. It outlines the steps involved in creating autologous stem cells to achieve an optimal in vivo outcome, namely, maintaining the efficacy of gene therapy obtained in preclinical studies when used in a human population.
Conclusion: CD34+-ARSA therapy is a rational and scientifically validated approach to long-term correction of enzyme deficiency and stabilization of the course of the disease.

Authors’ contributions: All the authors contributed equally to the preparation of this article: Iurova M.V., Popov K.V., Shevtsova Yu.A., Pavlovich S.V. – developing the concept of the article, obtaining and analyzing the actual data, writing and editing the text of the article, checking and approving the text of the article.
Conflicts of interest: Authors declare lack of the possible conflicts of interest.
Funding: The study was carried out within the framework of the state assignment of the Ministry of Health of the Russian Federation No.123020800103-6. 
For citation: Iurova M.V., Popov K.V., Shevtsova Yu.A., Pavlovich S.V. Principles for organizing a preclinical study of autologous CD34+ cells modified to express arylsulfatase A for the treatment of metachromatic leukodystrophy. 
Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2025; (12): 5-18 (in Russian)
https://dx.doi.org/10.18565/aig.2025.326

Keywords

autologous hematopoietic therapy
autologous cells
arylsulfatase A
biodistribution
hematopoietic stem cells
gene therapy
genotoxicity
preclinical studies
metachromatic leukodystrophy
lentiviral vector
ARSA
CD34+ cells

References

  1. Chang S.C., Bergamasco A., Bonnin M., Bisonó T.A., Moride Y. A systematic review on the birth prevalence of metachromatic leukodystrophy. Orphanet J. Rare Dis. 2024; 19(1): 80. https://dx.doi.org/10.1186/s13023-024-03044-w
  2. Asbreuk M.A.B.C., Schoenmakers D.H., Adang L.A., Beerepoot S., Bergner C. et. al. Metachromatic leukodystrophy: new therapy advancements and emerging research directions. Neurology. 2025; 105(2): e213817. https://doi.org/10.1212/WNL.0000000000213817
  3. Doherty K., Frazier S.B., Clark M., Childers A., Pruthi S., Wenger D.A. et al. A closer look at ARSA activity in a patient with metachromatic leukodystrophy. Mol. Genet Metab Rep. 2019; 19: 100460. https://doi.org/10.1016/j.ymgmr.2019.100460
  4. Laugwitz L., Schoenmakers D.H., Adang L.A., Beck-Woedl S., Bergner C., Bernard G. et al. Newborn screening in metachromatic leukodystrophy: European consensus-based recommendations on clinical management. Eur. J. Paediatr. Neurol. 2024; 49: 141-54. https://doi.org/10.1016/j.ejpn.2024.03.003
  5. Musolino P.L., Lund T.C., Pan J., Escolar M.L., Paker A.M., Duncan C.N. et al. Hematopoietic stem cell transplantation in the leukodystrophies: a systematic review of the literature. Neuropediatrics. 2014; 45(3): 169-74. https://dx.doi.org/10.1055/s-0033-1364179
  6. Groeschel S., Kühl J.S., Bley A.E., Kehrer C., Weschke B., Döring M. et al. Long-term outcome of allogeneic hematopoietic stem cell transplantation in patients with juvenile metachromatic leukodystrophy compared with nontransplanted control patients. JAMA Neurol. 2016; 73(9): 1133-40. https://dx.doi.org/10.1001/jamaneurol.2016.2067
  7. van Rappard D.F., Boelens J.J., van Egmond M.E., Kuball J., van Hasselt P.M., Oostrom K.J. et al. Efficacy of hematopoietic cell transplantation in metachromatic leukodystrophy: the Dutch experience. Blood. 2016; 127(24): 3098-101. https://dx.doi.org/10.1182/blood-2016-03-708479
  8. Fumagalli F., Calbi V., Natali Sora M.G., Sessa M., Baldoli C., Rancoita P.M.V. et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet. 2022; 399(10322): 372-83. https://dx.doi.org/10.1016/S0140-6736(21)02017-1
  9. Metovic J., Li Y., Gong Y., Eichler F. Gene therapy for the leukodystrophies: From preclinical animal studies to clinical trials. Neurotherapeutics. 2024; 21(4): e00443. https://dx.doi.org/10.1016/j.neurot.2024.e00443
  10. Şeker M., Erol Ö., Pervin B., Wagemaker G., van Til N., Aerts-Kaya F. Non-Myelotoxic agents as a preparatory regimen for hematopoietic stem cell gene therapy. Res. Sq. 2023. https://dx.doi.org/10.21203/rs.3.rs-3067174/v1
  11. Saha A., Blazar B.R. Antibody based conditioning for allogeneic hematopoietic stem cell transplantation. Front. Immunol. 2022; 13: 1031334. https://dx.doi.org/10.3389/fimmu.2022.1031334
  12. Calabria A., Spinozzi G., Cesana D., Buscaroli E., Benedicenti F., Pais G., Gazzo F. et al. Long-term lineage commitment in haematopoietic stem cell gene therapy. Nature. 2024; 636(8041): 162-71. https://dx.doi.org/10.1038/s41586-024-08250-x
  13. Sessa M., Lorioli L., Fumagalli F., Acquati S., Redaelli D., Baldoli C. et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: an ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet. 2016; 388(10043): 476-87. https://dx.doi.org/10.1016/S0140-6736(16)30374-9
  14. Orchard Therapeutics. Press Release. Orchard Therapeutics announces publication in the Lancet of long-term clinical outcomes with Libmeldy for the treatment of children with early-onset MLD. Available at: https://ir.orchard-tx.com/news-releases/news-release-details/orchard-therapeutics-announces-publication-lancet-long-term
  15. U.S. Food & Drug Administration. Guidance Document. Preclinical assessment of investigational cellular and gene therapy products. Guidance for Industry. November 2013. Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/preclinical-assessment-investigational-cellular-and-gene-therapy-products
  16. Wang D., Stevens G., Flotte T.R. Gene therapy then and now: a look back at changes in the field over the past 25 years. Mol. Ther. 2025; 33(5): 1889-902. https://dx.doi.org/10.1016/j.ymthe.2025.02.040
  17. Huang Ju., Khan A., Au B.C., Barber D.L., López-Vásquez L., Prokopishyn N.L. et al. Lentivector iterations and pre-clinical scale-up/toxicity testing: targeting mobilized CD34+ cells for correction of fabry disease. Mol. Ther. Methods Clin. Dev. 2017; 5: 241-58. https://dx.doi.org/10.1016/j.omtm.2017.05.003
  18. Frati G., Luciani M., Meneghini V., de Cicco S., Stahlman M., Blomqvist M. et al. Human iPSC-based models highlight defective glial and neuronal differentiation from neural progenitor cells in metachromatic leukodystrophy. Cell Death Dis. 2018; 9(6): 698. https://dx.doi.org/10.1038/s41419-018-0737-0
  19. Biffi A., Capotondo A., Fasano S., del Carro U., Marchesini S., Azuma H. et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J. Clin. Invest. 2006; 116(11): 3070-82. https://dx.doi.org/10.1172/JCI28873
  20. Salmikangas P., Carlsson B., Klumb C., Reimer T., Thirstrup S. Potency testing of cell and gene therapy products. Front. Med. (Lausanne). 2023; 10: 1190016. https://dx.doi.org/10.3389/fmed.2023.1190016
  21. Shaimardanova A.A., Chulpanova D.S., Solovyeva V.V., Mullagulova A.I., Kitaeva K.V., Allegrucci C. et al. Metachromatic leukodystrophy: diagnosis, modeling and treatment approaches. Front. Med. (Lausanne). 2020; 7: 576221. https://dx.doi.org/10.3389/fmed.2020.576221
  22. Hess B., Saftig P., Hartmann D., Coenen R., Lullmann-Rauch R., Goebel H.H. et al. Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc. Natl. Acad. Sci. USA. 1996; 93(25): 14821-6. https://dx.doi.org/10.1073/pnas.93.25.14821
  23. Rosenberg J.B., Kaminsky S.M., Aubourg P., Crystal R.G., Sondhi D. Gene therapy for metachromatic leukodystrophy. J. Neurosci. Res. 2016; 94(11): 1169-79. https://dx.doi.org/10.1002/jnr.23792
  24. Matthes F., Stroobants S., Gerlach D., Wohlenberg C., Wessig C., Fogh J. et al. Efficacy of enzyme replacement therapy in an aggravated mouse model of metachromatic leukodystrophy declines with age. Hum. Mol. Genet. 2012; 21(11): 2599-609. https://dx.doi.org/10.1093/hmg/dds086
  25. Doerr J., Böckenhoff A., Ewald B., Ladewig J., Eckhardt M., Gieselmann V. et al. Arylsulfatase A overexpressing human iPSC-derived neural cells reduce CNS sulfatide storage in a mouse model of metachromatic leukodystrophy. Mol. Ther. 2015; 23(9): 1519-31. https://dx.doi.org/10.1038/mt.2015.106
  26. Bai J.P.F., Bell R., Buckman S., Burckart G.J., Eichler H.G., Fang K.C. et al. Translational biomarkers: from preclinical to clinical a report of 2009 AAPS/ACCP biomarker workshop. AAPS J. 2011; 13(2): 274-83. https://dx.doi.org/10.1208/s12248-011-9265-x
  27. Rutherford H.A., Hamilton N. Animal models of leukodystrophy: a new perspective for the development of therapies. FEBS J. 2019; 286(21): 4176-91. https://dx.doi.org/10.1111/febs.15060
  28. Gall A., Treuting P., Elkon K.B., Loo Y.M., Gale M., Barber G.N. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity. 2012; 36(1): 120-31. https://dx.doi.org/10.1016/j.immuni.2011.11.018
  29. Ramakrishnan H., Hedayati K.K., Lullmann-Rauch R., Wessig C., Fewou S.N., Maier H. et al. Increasing sulfatide synthesis in myelin-forming cells of arylsulfatase A-deficient mice causes demyelination and neurological symptoms reminiscent of human metachromatic leukodystrophy. J. Neurosci. 2007; 27(35): 9482-90. https://dx.doi.org/10.1523/JNEUROSCI.2287-07.2007
  30. Sevin C., Roujeau T., Cartier N., Baugnon T., Adamsbaum C., Piraud M. et al. Intracerebral gene therapy in children with metachromatic leukodystrophy: results of a phase I / II trial. Mol. Genet. Metab. 2018; 123(2): S129. https://dx.doi.org/10.1016/j.ymgme.2017.12.352
  31. Муллагулова А.И., Шаймарданова А.А., Мухамедшина Я.О., Соловьева В.В., Ибрахим Ахмад А., Ризванов А.А. Анализ биораспределения аденоассоциированных вирусов 9 и rh.10 серотипов, кодирующих ген арилсульфатазы а, после предварительной иммунизации свиней вирусом 9 серотипа. Ученые записки Казанского университета. Серия «Естественные науки». 2024; 166(4): 683-703. [Mullagulova A.I., Shaimardanova A.A., Mukhamedshina Ya.O., Solovyeva V.V., Ibrahim A., Rizvanov A.A. Biodistribution analysis of adeno-associated viral vectors of serotypes 9 and rh.10 encoding arylsulfatase a following prior immunization with serotype 9 in pigs. Proceedings of Kazan University. Natural Sciences Series. 2024; 166(4): 683-703 (in Russian)]. https://dx.doi.org/10.26907/2542-064X.2024.4.683-703
  32. Masiuk K.E., Zhang R., Osborne K., Hollis R.P., Campo-Fernandez B., Kohn D.B. PGE2 and poloxamer synperonic F108 enhance transduction of human HSPCs with a β-globin lentiviral vector. Mol. Ther. Methods Clin. Dev. 2019; 13: 390-8. https://dx.doi.org/10.1016/j.omtm.2019.03.005
  33. Miyake N., Miyake K., Sakai A., Yamamoto M., Suzuki H., Shimada T. Treatment of adult metachromatic leukodystrophy model mice using intrathecal administration of type 9 AAV vector encoding arylsulfatase A. Sci. Rep. 2021; 11(1): 20513. https://dx.doi.org/10.1038/s41598-021-99979-2
  34. Wang H., Georgakopoulou A., Zhang W., Kim J., Gil S., Ehrhardt A. et al. HDAd6/35++ – a new helper-dependent adenovirus vector platform for in vivo transduction of hematopoietic stem cells. Mol. Ther. Methods Clin. Dev. 2023; 29: 213-26. https://dx.doi.org/10.1016/j.omtm.2023.03.008
  35. St Martin T., Seabrook T.A., Gall K., Newman J., Avila N., Hayes A. et al. Single systemic administration of a gene therapy leading to disease treatment in metachromatic leukodystrophy arsa knock-out mice. J. Neurosci. 2023; 43(19): 3567-81. https://dx.doi.org/10.1523/JNEUROSCI.1829-22.2023
  36. Matzner U., Matthes F., Herbst E., Lüllmann-Rauch R., Callaerts-Vegh Z., D’Hooge R. et al. Induction of tolerance to human arylsulfatase A in a mouse model of metachromatic leukodystrophy. Mol. Med. 2007; 13(9-10): 471-9. https://dx.doi.org/10.2119/2007-00063.Matzner
  37. Ayupova A.I., Solovyeva V.V., Issa S.S., Fayoud H.J., Rizvanov A.A. Surrogate biomarkers in gene therapy for orphan diseases: validation, application, and regulatory aspects. Int. J. Mol. Sci. 2025; 26(20): 10107. https://dx.doi.org/10.3390/ijms262010107
  38. Armstrong N., Olaye A., Noake C., Pang F. A systematic review of clinical effectiveness and safety for historical and current treatment options for metachromatic leukodystrophy in children, including atidarsagene autotemcel. Orphanet J. Rare Dis. 2023; 18(1): 248. https://dx.doi.org/10.1186/s13023-023-02814-2
  39. Beerepoot S., Heijst H., Roos B., Wamelink M.M.C., Boelens J.J., Lindemans C.A. et al. Neurofilament light chain and glial fibrillary acidic protein levels in metachromatic leukodystrophy. Brain. 2021; 145(1): 105-18. https://dx.doi.org/10.1093/brain/awab304
  40. Audouard E., Khefif N., Mansat C., Nelcha O., Banchi E.G., Lupiet C. et al. Dose-response evaluation of intravenous gene therapy in a symptomatic mouse model of metachromatic leukodystrophy. Mol. Ther. Methods Clin. Dev. 2024; 32(2): 101248. https://dx.doi.org/10.1016/j.omtm.2024.101248
  41. European Medicines Agency (EMA). Clinical trials in small populations – scientific guideline. Available at: https://www.ema.europa.eu/en/clinical-trials-small-populations-scientific-guideline (accessed on 5 November 2025).
  42. Kordower J.H., Bloch J., Ma S.Y., Chu Y., Palfi S., Roitberg B.Z. et al. Lentiviral gene transfer to the nonhuman primate brain. Exp. Neurol. 1999; 160(1): 1-16. https://dx.doi.org/10.1006/exnr.1999.7178
  43. Humbel M., Ramosaj M., Zimmer V., Regio S., Aeby L., Moser S. et al. Maximizing lentiviral vector gene transfer in the CNS. Gene Ther. 2021; 28(1-2): 75-88. https://dx.doi.org/10.1038/s41434-020-0172-6
  44. Jeon S.B., Yoon H.J., Park S.H., Kim I.H., Park E.J. Sulfatide, a major lipid component of myelin sheath, activates inflammatory responses as an endogenous stimulator in brain-resident immune cells. J. Immunol. 2008; 181(11): 8077-87. https://dx.doi.org/10.4049/jimmunol.181.11.8077
  45. Bushman F.D. Retroviral insertional mutagenesis in humans: evidence for four genetic mechanisms promoting expansion of cell clones. Mol. Ther. 2020; 28(2): 352-6. https://dx.doi.org/10.1016/j.ymthe.2019.12.009
  46. Goyal S., Tisdale J., Schmidt M., Kanter J., Jaroscak J., Whitney D. et al. Acute myeloid leukemia case after gene therapy for sickle cell disease. N. Engl. J. Med. 2022; 386(2): 138-47. https://dx.doi.org/10.1056/NEJMoa2109167
  47. Aerts-Kaya F., van Til N.P. Gene and cellular therapies for leukodystrophies. Pharmaceutics. 2023; 15(11): 2522. https://dx.doi.org/10.3390/pharmaceutics1511252
  48. U.S. Food & Drug Administration. Biologics License Application Approval for Elivaldogene Autotemcel. Available at: https://www.fda.gov/media/161665/download (accessed on 14 September, 2025).
  49. Keam S.J. Elivaldogene Autotemcel: First approval. Mol. Diagn. Ther. 2021; 25(6): 803-9. https://dx.doi.org/10.1007/s40291-021-00555-1
  50. Biffi A., Montini E., Lorioli L., Cesani M., Fumagalli F., Plati T. et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013; 341(6148): 1233158. https://dx.doi.org/10.1126/science.1233158
  51. Schwarzer A., Talbot S.R., Selich A., Morgan M., Schott J.W., Dittrich-Breiholz O. et al. Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning. Mol. Ther. 2021; 29(12): 3383-97. https://dx.doi.org/10.1016/j.ymthe.2021.06.017
  52. Li S., Tang H., Li C., Ma J., Ali M., Dong Q. et al. Synthetic biology technologies and genetically engineering strategies for enhanced cell therapeutics. Stem Cell Rev. Rep. 2023; 19(2): 309-21. https://dx.doi.org/10.1007/s12015-022-10454-5
  53. Poletti V., Mavilio F. Designing lentiviral vectors for gene therapy of genetic diseases. Viruses. 2021; 13(8): 1526. https://dx.doi.org/10.3390/v13081526
  54. Williams D.A., Bledsoe J.R., Duncan C.N., Eichler F.S., Grzywacz B., Gupta A.O. et al. Myelodysplastic syndromes after Eli-cel gene therapy for cerebral adrenoleukodystrophy (CALD) [ASGCT abstract 11]. Mol. Ther. 2022; 30: 5S1.
  55. Решение Коллегии Евразийской экономической комиссии от 26 ноября 2019 г. № 202 «Об утверждении Руководства по доклиническим исследованиям безопасности в целях проведения клинических исследований и регистрации лекарственных препаратов». Доступно по: https://www.alta.ru/tamdoc/19kr0202/ [Decision of the Board of the Eurasian Economic Commission dated November 26, 2019, No. 202 "On approval of the Guidelines for preclinical safety studies for the purpose of conducting clinical studies and registering medicinal products". Available at: https://www.alta.ru/tamdoc/19kr0202/ (in Russian)].
  56. Biffi A., De Palma M., Quattrini A., Del Carro U., Amadio S., Visigalli I. et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Invest. 2004; 113(8): 1118-29. https://dx.doi.org/10.1172/JCI19205
  57. Fratantoni J.C., Hall C.W., Neufeld E.F. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science. 1968; 162(3853): 570-2. https://dx.doi.org/10.1126/science.162.3853.570
  58. Федеральный закон от 12.04.2010 № 61-ФЗ. Об обращении лекарственных средств (ред. от 26.12.2024) (с изм. и доп., вступ. в силу с 01.03.2025. Доступно по: https://roszdravnadzor.gov.ru/drugs/documents/66. [Federal Law No. 61-FZ of 12.04.2010. On the circulation of medicines (ed. dated 12/26/2024) (with amendments and additions, became effective 03/01/2025). Available at: https://roszdravnadzor.gov.ru/drugs/documents/66 (in Russian)].

Received 11.11.2025

Accepted 28.11.2025

About the Authors

Mariia V. Iurova, PhD, obstetrician-gynecologist, oncologist, Senior Researcher at the Scientific Polyclinic Department, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4; Teaching Assistant at the Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Vocational Education, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), m_yurova@oparina4.ru, https://orcid.org/0000-0002-0179-7635
Konstantin V. Popov, PhD, Head of the Laboratory for Personalized Medicines, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, k_popov@oparina4.ru, https://orcid.org/0000-0002-3436-3235
Yulia A. Shevtsova, Junior Researcher at the Laboratory of Cell Technologies, Institute of Translational Medicine, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4, yu_shevtsova@oparina4.ru,
https://orcid.org/0000-0003-4780-341X
Stanislav V. Pavlovich, PhD, Scientific Secretary, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, 117997, Russia, Moscow, Ac. Oparina str., 4; Professor at the Department of Obstetrics, Gynecology, Perinatology and Reproductology, Institute of Vocational Education, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), s_pavlovich@oparina4.ru,
https://orcid.org/0000-0002-1313-7079
Corresponding author: Mariia V. Iurova, m_yurova@oparina4.ru