Issues of ectogenesis and creation of the extracorporeal system for fetal development

Yavorovskaya K.A., Goryachev А.А.

1) Savelyeva City Clinical Hospital No. 31, Moscow City Health Department, Branch No. 3 Center for Assisted Reproductive Technologies, Moscow, Russia; 2) Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow, Russia

The idea of creating a system capable of supporting and ensuring the complete development of the human embryo dates back to the middle of the 20th century. The combination of factors, which are created artificially and are very close to the natural physiological ones, will give a chance to accomplish the development of the fetus without the involvement of the female reproductive organs. The fetus can develop in a separate environment where it is isolated from the possible harmful effects of maternal diseases or toxic substances. This paper presents an overview and summary of the data published on the issue. The creation of an extracorporeal system for fetal development (ESFD) is associated with a number of difficulties. One of the most important challenges is the reproduction of the optimal conditions for the development of the fetus in an artificial environment, where the fetus will have to stay throughout the entire period of its development. In order to avoid ontogenesis disorders and pathologies of organ systems when using ESFD, it is necessary to reproduce all the conditions specific to complete intrauterine development, which include not only the supply of nutrients to the growing embryo, but also the maintenance of parameters such as pH and temperature. Currently, there is a growing interest in creating a device that could allow a fetus to develop ex vivo. Over the past few years, the scientists have published numerous reports on the creation of the necessary components of the system (artificial placenta, amniotic fluid substitute, etc.). Life support systems are improved and supplemented with new elements that contribute to the reproduction of natural conditions which normally exist in the maternal organism. Conclusion: The main aim of the research groups is to create artificial conditions for the development of the fetus simulating all the physiological parameters of the natural environment for the complete formation of the organism. The use of ESFD will make it possible to reproduce vital conditions for the growth and development of the fetus and it will help women who are unable to bear a child on their own. It can also influence the views of society on surrogate motherhood and the restoration of childbearing function using uterine transplantation. There is still no clear understanding of how such a method of gestation can affect the relationship between mother and child, which may compromise the creation and use of such a system from an ethical point of view.

Authors’ contributions: Goryachev A.A. – collecting and processing material, writing the text; Yavorovskaya K.A. – editing the text.

Conflicts of interest: The authors declare no conflicts of interest.

Funding: The study was conducted without sponsorship.

For citation: Yavorovskaya K.A., Goryachev А.А. Issues of ectogenesis and creation of the extracorporeal system for fetal development. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2023; (10): 70-76 (in Russian)


artificial uterus
artificial placenta
extracorporeal system for fetal development
artificial endometrium


  1. Greenberg E.M. The artificial uterus. Int. Rec. Med. Gen. Pract. Clin. 1956; 169(5): 262-5.
  2. Schoberer M., Arens J., Lohr A., Seehase M., Jellema R.K., Collins J.J. et al. Fifty years of work on the artificial placenta: milestones in the history of extracorporeal support of the premature newborn. Artif, Organs. 2012; 36(6): 512-6.
  3. Westin B., Nyberg R., Enhorning G. A technique for perfusion of the Previable human fetus. Acta Paediatr. (Stockh). 1958; 47(4): 339-49.
  4. Callaghan J.C., Maynes E.A., Hug H.R. Studies on lambs of the development of an artificial placenta. Review of nine long-term survivors of extracorporeal circulation maintained in a fluid medium. Can. J. Surg. 1965; 8: 208-13.
  5. Callaghan J.C., Angeles J., Boracchia B., Fisk L., Hallgren R. Studies of the first successful delivery of an unborn lamb after 40 minutes in the artificial placenta. Can. J. Surg. 1963; 6: 199-206.
  6. Maynes E.A., Callaghan J.C. A new method of oxygenation: a study of its use in respiratory support and the artificial placenta. Ann. Surg. 1963; 158(4): 537-43.
  7. Zapol W.M., Kolobow T., Jevurek G.G.P., Bowman R.L. Artificial placenta: two days of total extrauterine support of the isolated premature lamb fetus. Science. 1969; 166(3905): 617-8.
  8. Kirby R.R. Intermittent mandatory ventilation in the neonate. Crit. Care Med. 1977; 5(1): 18-22.
  9. Speidel B., Dunn P.M. Use of nasal continuous positive airway pressure to treat severe recurrent apnoea in very preterm infants. Lancet. 1976; 308(7987):658-60.
  10. Butler W.J., Bohn D.J., Bryan A.C., Froese A.B. Ventilation by highfrequency oscillation in humans. Anesth. Analg. 1980; 59(8): 577-84.
  11. Liggins G.C., Howie R.N. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972; 50(4): 515-25.
  12. Kattner E., Metze B., Waiss E., Obladen M. Accelerated lung maturation following maternal steroid treatment in infants born before 30 weeks gestation. J. Perinat. Med. 1992; 20(6): 449-57.
  13. Ten Centre study group. Ten Centre trial of artificial surfactant (artificial lung expanding compound) in very premature babies. BMJ. 1987; 294(6578): 991-6.
  14. Long W., Corbet A., Cotton R., Courtney S., McGuiness G., Walter D. et al. A controlled trial of synthetic surfactant in infants weighing 1250 G or more with respiratory distress syndrome. The American Exosurf Neonatal Study Group I, and the Canadian Exosurf Neonatal Study Group. N. Engl. J. Med. 1991; 325(24): 1696-703.
  15. Reoma J.L., Rojas A., Kim A.C., Khouri J.S., Boothman E., Brown K. et al. Development of an artificial placenta I: pumpless arterio-venous extracorporeal life support in a neonatal sheep model. J. Pediatr. Surg. 2009; 44(1): 53-9.
  16. Unno N., Baba K., Kozuma S., Nishina H., Okai T., Kuwabara Y., Taketani Y. An evaluation of the system to control blood flow in maintaining goat fetuses on arterio-venous extracorporeal membrane oxygenation: a novel approach to the development of an artificial placenta. Artif. Organs. 1997; 21(12): 1239-46.
  17. Rochow N., Chan E.C., Wu W.I., Selvaganapathy P.R., Fusch G., Berry L. et al. Artificial placenta--lung assist devices for term and preterm newborns with respiratory failure. Int. J. Artif. Organs. 2013; 36(6): 377-91.
  18. Davis R.P., Bryner B., Mychaliska G.B. A paradigm shift in the treatment of extreme prematurity: the artificial placenta. Curr, Opin, Pediat. 2014; 26(3): 370-6.
  19. Schoberer M., Arens J., Erben A., Ophelders D., Jellema R.K., Kramer B.W. et al. Miniaturization: the clue to clinical application of the artificial placenta. Artif. Organs. 2014; 38(3): 208-14.
  20. Bryner B., Gray B., Perkins E., Davis R., Hoffman H., Barks J. et al. An extracorporeal artificial placenta supports extremely premature lambs for 1 week. J. Pediatr. Surg. 2015; 50(1): 44-9.
  21. Bird S.D. Artificial placenta: Analysis of recent progress. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017; 208: 61-70.
  22. Yan W.Y., Li L., Yang Y.G., Lin X.L., Wu J.Z. [Application of the computer-based respiratory sound analysis system based on Mel-frequency cepstral coefficient and dynamic time warping in healthy children]. Zhonghua Er Ke Za Zhi. 2016; 54(8): 605-9. (in Chinese.)
  23. Metelo-Coimbra C., Roncon-Albuquerque R. Jr. Artificial placenta: recent advances and potential clinical applications. Pediatr. Pulmonol. 2016; 51(6): 643-9.
  24. Perazzolo S., Lewis R.M., Sengers B.G. Modelling nutrient transfer based on 3D imaging of the human placental microstructure. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2016: 5953-6.
  25. Partridge E.A., Davey M.G., Hornick M.A., Flake A.W. An EXTrauterine environment for neonatal development: EXTENDING fetal physiology beyond the womb. Semin. Fetal Neonatal Med. 2017; 22(6): 404-9.
  26. Bulletti C., Jasonni V.M., Lubicz S., Flamigni C., Gurpide E. Extracorporeal perfusion of the human uterus. Am. J. Obstet. Gynecol. 1986; 154(3): 683-8.
  27. Bulletti C., Jasonni V.M., Martinelli G., Govoni E., Tabanelli S., Ciotti P.M., Flamigni C. A 48-hour preservation of an isolated human uterus: endometrial responses to sex steroids. Ferti.l Steril. 1987; 47(1): 122-9.
  28. Bulletti C., Jasonni V.M., Tabanelli S., Gianaroli L., Ciotti P.M., Ferraretti A.P., Flamigni C. Early human pregnancy in vitro utilizing an artificially perfused uterus. Fertil. Steril. 1988; 49(6): 991-6.
  29. Bulletti C., Prefetto R.A., Bazzocchi G., Romero R., Mimmi R., Polli V. et al. Electromechanical activities of human uteri during extra corporeal perfusion with ovarian steroids. Hum. Reprod. 1993; 8(10): 1558-63.
  30. Bulletti C., DeZiegler D., Flamigni C., Giacomucci E., Polli V., Bolelli G., Franceschetti F. Targeted drug delivery in gynecology: the first uterine pass effect. Hum. Reprod. 1997; 12(5): 1073-9.
  31. Mejaddam A.Y., Hornick M.A., McGovern P.E., Baumgarten H.D., Lawrence K.M., Rossidis A.C. et al. Erythropoietin prevents anemia and transfusions in extremely pre mature lambs supported by an EXTrauterine environment for neonatal development (EXTEND). Fetal Diagn. Ther. 2019; 46(4): 231-7.
  32. McGovern P.E., Hornick M.A., Mejaddam A.Y., Lawrence K., Schupper A.J., Rossidis A.C. et al. Neurologic out comes of the premature lamb in an extrauterine environment for neonatal development. J. Pediatr. Surg. 2020; 55(10): 2115-23.
  33. Amendola C., Lorenzo Spinelli L., Contini D., De Carli A., Martinelli C., Fumagalli M., Torricelli A. Accuracy of homogeneous models for photon diffusion in estimating neonatal cerebral hemodynamics by TD-NIRS. Biomed. Opt. Express. 2021; 12(4): 1905-21. 10.1364/BOE.417357.
  34. Hoveling T., van Haren J., Delbressine F. Simulating the first breath: design of the respiratory reflex in a fetal manikin. In: ICBBE '21: 2021 8th International Conference on Biomedical and Bioinformatics Engineering. 2021: 163-9.
  35. Schatz F., Papp C., Toth-Pal E., Cudemo V., Hausknecht V., Krikun G. et al. Protease and protease inhibitor expression during in vitro decidualization of human endometrial stromal cells. Ann. N.Y. Acad. Sci. 1994; 734: 33-42.
  36. Park S.R., Kim S.R., Im J.B., Park C.H., Lee H.Y., Hong I.S. 3D stem cell-laden artificial endometrium: successful endometrial regeneration and pregnancy. Biofabrication. 2021; 13(4).
  37. Park S.-R., Kook M.G., Kim S.-R., Lee J.W., Park C.H., Oh B.-C. et al. Development of cell-laden multimodular Lego-like customizable endometrial tissue assembly for successful tissue regeneration. Biomater. Res. 2023; 27(1): 33. https:/dx./
  38. Almadhoob A., Ohlsson A. Sound reduction management in the neonatal intensive care unit for preterm or very low birth weight infants. Cochrane Database Syst. Rev. 2020; 1(1): CD010333.
  39. Partridge E.A., Davey M.G., Hornick M.A., McGovern P.E., Mejaddam A.Y., Vrecenak J.D. et al. An extra-uterine system to physiologically support the extreme premature lamb. Nat. Commun. 2017; 8: 15112.
  40. Kingma E., Finn S. Neonatal incubator or artificial womb? Distinguishing ectogestation and ectogenesis using the metaphysics of pregnancy. Bioethics. 2020; 34(4): 354-63.
  41. Thébaud B., Lalu M., Renesme L., van Katwyk S., Presseau J., Thavorn K. et al. Benefits and obstacles to cell therapy in neonates: The INCuBAToR (Innovative Neonatal Cellular Therapy for Bronchopulmonary Dysplasia: Accelerating Translation of Research). Stem Cells Transl. Med. 2021; 10(7): 968-75.
  42. Roberts C.T. Biomedical research: Premature lambs grown in a bag. Nature. 2017; 546(7656): 45-6.
  43. Church J.T., McLeod J.S., Perkins E.M., Bartlett R.H., Mychaliska G.B. The artificial placenta rescues premature lambs from Ventilatory failure. J. Am. Coll. Surg. 2017; 225(4): S157-58.
  44. De Bie F.R., Davey M.G., Larson A.C., Deprest J., Flake A.W. Artificial placenta and womb technology: Past, current, and future challenges towards clinical translation. Prenat. Diagn. 2020; 41(1): 145-58.
  45. Hornick M.A., Mejaddam A.Y., McGovern P.E., Hwang G., Han J., Peranteau W.H. et al. Technical feasibility of umbilical cannulation in midgestation lambs supported by the EXTra-uterine environment for neonatal development (EXTEND). Artif. Organs. 2019; 43(12): 1154-61.
  46. Rossidis A.C., Angelin A., Lawrence K.M., Baumgarten H.D., Kim A.G., Mejaddam A.Y. et al. Premature lambs exhibit normal mitochondrial respiration after long-term extrauterine support. Fetal Diagn. Ther. 2019; 46(5): 306-12.
  47. Van der Hout-van der Jagt M.B., Verweij E.J.T., Andriessen P., de Boode W.P., Bos A.F., Delbressine F.L.M. et al. Interprofessional consensus regarding design requirements for liquid-based perinatal life support (PLS) technology. Front. Pediatr. 2022; 9: 793531.
  48. Van Willigen B.G., van der Hout-van der Jagt M.B., Huberts W., van de Vosse F.N. A review study of fetal circulatory models to develop a digital twin of a fetus in a perinatal life support system. Front. Pediatr. 2022; 10: 915846.
  49. Aguilera-Castrejon A., Oldak B., Shani T., Ghanem N., Itzkovich C., Slomovich S. et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature. 2021; 593(7857): 119-24.
  50. Tarazi S., Aguilera-Castrejon A., Joubran C., Ghanem N., Ashouokhi S., Roncato F. et al. Post-gastrulation synthetic embryos generated ex utero from mouse naive ESCs. Cell. 2022; 185(18): 3290-306.e25.
  51. Malloy C., Wubbenhorst M.C., Lee T.S. The perinatal revolution. Issues Law Med. 2019 Spring; 34(1): 15-41.

Received 22.05.2023

Accepted 05.10.2023

About the Authors

Ksenia A. Yavorovskaya, Dr. Med. Sci., Professor, Head of the Centre for Assisted Reproductive Technologies, +7(985)765-51-49,,
119331, Russia, Moscow, Vernadskogo Ave., 33A.
Alexsander A. Goryachev, student, N.I. Pirogov Russian National Research University, Ministrty of Health of Russia, +7(916)995-50-37,,
117997, Russia, Moscow, Ostrovityanov str., 1-7.
By continuing to use our site, you consent to the processing of cookies that ensure the proper functioning of the site.